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CALCULUS MAGNIFICATION

.

This is one of a series of very short books on math, statistics, and physics called “Math Magnifi-
cations.” The “magnification” refers to focusing on a particular topic that is pivotal in or emblematic

of mathematics.
OUTLINE

After some informal remarks, we will introduce, and hopefully demystify, the two biggest deals
of “freshman [in college] calculus,” the derivative and the integral.

The derivative will be seen to be an extension of the idea of slope of a straight line, while the
integral extends the idea of area of a rectangle.

A deeper, root idea of calculus, that of approximations that become arbitrarily good, will be
ubiquitous throughout our constructions.

Prerequisites for this magnification are first-year high school algebra, such as may be found in
[7]. We will review slope of a straight line and area of a rectangle in Chapter I.

See [3, Section IV] for a more pedagogical discussion of the contents of Chapters III and IV of
this magnification.
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BRIEF HISTORICAL, PEDAGOGICAL, and PHILOSOPHICAL INTRODUCTION.
~

In assigning credit for the creation of calculus, the classical Greeks need to be given a large
portion for identifying, and constantly frustrating themselves trying to resolve, problems and con-
tradictions, such as Zeno’s paradoxes (see [1, Chapter 11], [2, pp. 22-27],[4], and [5, Section 4.1]) that
can be understood only with calculus. On a more positive note, Archimedes performed integration,
using triangles instead of rectangles (see [8, Sections 4.4 and 4.5]).

The classical Greeks are also justifiably famous for exploring intensely almost every possible
philosophical outlook. The purely philosophical duality of constant flux (e.g., Heraclitus said that
you cannot step in the same river twice) versus an unchanging world (e.g., Parmenides said that
“there is no such thing as change”) (see [1, Chapter 11) is also resolved by calculus, dealing as it
does with change and motion: calculus produces patterns that are unchanging in their description
of change.

Derivatives and integrals were defined and calculated by many mathematicians in the early
1600s. When we say Newton and Leibniz (independently) created calculus, we mean the creation
of the Fundamental Theorem of Calculus, that relates differentiation and integration (except for a
homework problem that cryptically indicates something of that sort, we won’t go into that relation
in this magnification).

See the references for histories of both calculus and classical Greek mathematics.

Pedagogically, calculus begins with motion. In math classes that traditionally precede calculus,
a great deal of impressive detective work should appear. With trigonometry, for example, one may
figure out the width of a river purely by making measurements on only one side of the river (see,
e.g., [5, Example 3.9]). But that’s not in the style of calculus, because everything you care about is
static, and sits around passively and obligingly waiting for you to make measurements and calculate.
A typical calculus problem is to drop an orange off a building and worry about its height above the
ground at different times. Not only is the height of the orange changing every moment, the rate at
which it changes (the velocity of the orange) is itself changing. That constant motion of the orange
and its rate of change is disconcerting.

The motion of calculus might refer to nimble mental activity, especially making approximations
that you hope will get arbitrarily close to a mysterious and elusive quantity of concern. For example,
the number 7 is essential for so many things, yet we can never write it down explicitly. In particular,
its decimal expansion (whatever that means!) is infinite and nonrepeating. Thus we approximate
7 and worry about whether our approximation is good enough. One of many such sequences of
approximations that follow is from the decimal expansion:

m~3, m~3.1, m~3.14, T ~ 3.141,....

The idea of such a sequence is that, although it’s possible that no member of the sequence will equal
m, we can get approximations of 7 of any desired accuracy.

It should be mentioned that Zeno’s paradoxes involve motion, and, probably not coincidentally,
Zeno was a student of Parmenides, mentioned above in the second paragraph of this introduction.
Let’s conclude this introduction with a quick description of three of those paradoxes.

Dichotomy. To walk to a chair a yard away, I must first cover half a yard, then one fourth of a yard
(half the remaining distance), then one eighth of a yard (half of one fourth of a yard), ... Actually
reaching the chair thus requires traveling a distance equal to the sum
I -1 &
(§+Z+§+"') yards
of infinitely many terms, which our intuition tells us (falsely, but Zeno didn’t know this) must be an
infinite distance, requiring an infinite amount of time to travel. Thus I will never reach the chair.
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Achilles. Achilles is following a tortoise walking (slowly) in a straight line, trying to catch up with
said tortoise.

Let’s say Achilles starts out a; yards from the tortoise. When Achilles has traveled those a;
yards, the tortoise has also moved, say to a distance as yards from Achilles. Achilles then patiently
travels those as yards, only to find the tortoise a new distance, call it a3 yards, from Achilles.

Proceeding this way produces an infinite sequence of numbers

ai,a,0a3,a4, ...
such that, for Achilles to reach the tortoise, Achilles must travel
(a1 +a2+az+as+...) yards.
As with Dichotomy, this sum appears, to the uncalculussed layman, to equal an infinite distance,

thus Achilles will never reach the tortoise.

Arrow. If an arrow is fired through the air, and we take a picture of it at a particular “instant” of
time, the arrow appears to be stationary. This means its intended target is safe; the arrow cannot
go anywhere.

Dichotomy and Achilles involve arbitrarily large things (number of terms to add) while Arrow
involves an arbitrarily small thing (an instant of time). To make sense of the seeming paradoxes
requires the fundamental calculus idea of a limiting process, as in the comments after Tables 2.9 and
3.8.




CHAPTER I: REVIEW OF LINES.

~

We will briefly review the Cartesian plane and (straight) lines therein, partly to standardize
terminology, but primarily with an eye to derivatives and integrals, that take on simple, familiar
and believable forms in the setting of lines in the plane.

Definitions 1.1. The Cartesian plane, hereafter referred to as “the plane,” is the set of all
ordered pairs {(a,b)|a,b real}, represented as points: for any real a, b, (a,b) is associated with the
point a units to the right of the origin and b units above the origin. a is the x coordinate of (a, b)
and b is the y coordinate of (a,b).

DRAWING 1.2
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Definitions 1.3. A line (in the plane) is {(z,y) |y = mz + b} or {(z,y) |z = ¢}, for some fixed
real number m, b, or c.

y =mz + b or x = c is the equation of the line.

Examples 1.4. In each part, draw the line with the given equation, by finding two ordered pairs
on the line.

(a) y=—2x+3

(byz=1

Solutions. For each line, make a small table of values, put the two ordered points from said table
on the Cartesian plane, then draw the unique line through those points.




Definitions 1.5. Suppose a line has equation y = mx + b. The number b is the y intercept of the
line. For example, the line in Examples 1.4(a) has a y intercept of 3; in general, the y intercept is
where the line crosses the y axis.

DRAWING 1.6

The number m is the slope or rate of change of y = mx +b or the line, and has a more subtle
picture (DRAWING 1.7), which we will now describe.

The capital Greek letter “delta” is denoted A, and translates roughly as difference or change.
In our setting, take two points (z1,¥;) and (z2,y2) on a line; then

Az = (change in z) = (z2 — z1) and Ay = (change in y) = (y2 — y1)-




DRAWING 1.7

Then it is not hard to show that m = %ﬁ. Ay is sometimes called rise (think of a hot-air
balloon), Az run (think of running on the ground keeping up with the balloon), so that slope is

dynamically called
rise . .
m = —, “rise over run.
run

Example 1.8. Let y = 2z — 1 be the equation of a line. For the pair of points (0, —1), (3,5) on the
line,
Ay 5-(-1) 6

= ___9
Az 3-0 3 ’

for the pair of points (-1, —3), (1,1) on the line,
Ay 1-(=3) —é—2

Az  1-(-1) 2
Notice that 2 is the slope of the line with equation y = 2z — 1.

Lines are characterized by the fact that %’-‘mi — %:—Zi% is the same for any pair of points

(z1,91), (2, y2) on the line; no other curve in the plane has this property.

Example 1.9. Suppose a work drone charges fifty dollars to show up, then charges twelve dollars
per hour for work done. Let y be the money made by the drone and let x be the number of hours
the drone works. Then

y = 50 4 12z;
note that 12 is the slope of the line with the equation y = 50 + 12x and 50 is the y intercept.
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Discussion 1.10. Up until now, all our work about lines in this chapter has been a precursor for the
derivative, introduced in Chapter II. For the integral, we only need one result involving horizontal

and vertical lines; the analogous preparation for the integral, to appear in Chapter IIT, consists solely
of the following formula for the area of a rectangle:

DRAWING 1.11

aréea = ‘Wb

b

The derivative will be a natural extension of slope of a straight line, while the integral will be a
natural extension of area of a rectangle.




CHAPTER II: SLOPE OF LINES LEADS TO DERIVATIVE

~

The word “slope,” from Chapter I, has visceral physical meaning, as in the slope of a hill you
wish to ascend. See DRAWINGS 2.1 below: you feel a steep slope (meaning the slope of Chapter I
is a large positive number) in your heart rate and lung inhalation.

DRAWINGS 2.1
© gmc;ll §|0PC/

h C\PPJ %i /“"’

v large slope

sacd hiker

/

Consider now the parabola with equation y = z2. As we did with lines, I'll draw the parabola
by starting with a small table of values.

—2
—1




Draw the parabola by connecting the five dots smoothly.

DRAWING 2.2

If our hillside has this parabolic shape, hiking will feel different at different points.

DRAWING 2.3

From the point of view of hiker happiness, there appear to be different slopes at different points
on the parabola.
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Discussion 2.4.
slope of a straight line: %ﬁ = ((M); (see Definitions 1.5).

I2—I1 ~

Let’s calculate %%, for different pairs of points (z1,41), (z2, y2) on the parabola.

_ _ Ay _9-1_8_
(zlayl) P (171),(-’527112) - (379) Az - 3—_1 = 2 =4.
Ay 1-1 0
(@1,31) = (=1,1), (22,32) = (1,1) = = = -2 %
A 0-9 -9
(z1,91) = (=3,9), (z2,¥2) = (0,0) — e s e = -3.

Az 0-(-3) 3

DRAWINGS 2.4(a)

\
=

| < loVC

T

But don’t take the stick figures’ word. Recall our rigorous characterization of

§[O[)€

|
|
(SN
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Let’s keep z; constant, and try %%:

~
= _ Ay 9-0 9
(21,3) = (0,0), (2,92) = (3,9) > = = 3= =3 =3
y 1-0 1
1) =(0,0), (z2,52) = (L,1) » —=—— =_=1.
(z1,91) = (0,0), (z2,92) = (1,1) o 1

DRAWINGS 2.4(b)
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Definition 2.5. For the parabola, or any curve other than a straight line, %% will not be the same,
for all pairs of points (z1,1), (z2,y2); thus slope, or rate of change, as in Definitions 1.5, is not a
uniquely defined number for the entire curve. The best we can do, before wading into the waters of
calculus, is talk about average rate of change, over an interval of z values z; < z < zs.

For the parabola with equation y = z?

over r1 < x < s is

a3 — ot
.’152—1‘1.

DRAWING 2.6

1
g =

,o1 < 2 real numbers, the average rate of change

slope
5}
( OVerngR

WAQ ﬁf\

f C,{m 4513

For example, we’ve calculated in Discussion 2.4 that the average rate of change over 1 < z < 3

is 4, while the average rate of change over —1 < z <1 is 0.

Discussion 2.7. Average rate of change is the rate of change over an interval. We want to address
the rate of change at a point. For example, we want to know at what rate a hiker is ascending at a

particular moment, as in DRAWING 2.3.

Let’s say we want the rate of change of the parabola y = 22 at = 4. Here is our strategy. For

arbitrary Az, we will calculate the average rate of change over

4<z<(4+ Ax);
see DRAWING 2.8.
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DRAWING 2.8
Aq
Ax

Overage rocte

& C('ijﬁ

i |

X';LL \/\?_:l&Ll-nLAX)
é"AXM

Our intuition is, that as Az gets very small, we should be getting very good approximations of
a number that we could reasonably call slope or (instantaneous) rate of change of y = z2 at = = 4.

T2

4.1
4.01

4.001

(4+ Az)

TABLE 2.9
change in z | change in y |  average rate of change
__________ | e s e i i i v e e e e i e L B [ e A Fa p
(5-4)= (4+1)2-42=52_-42=9 2=9
(41-4)=0.1 (440.1)2 —42=4.12-42=0.81 981 —g.1
0.01

0.008001 __
0.008001 — 8,001

gSAzX(IA::)z) (8 + Az)

|
|
(4.01 — 4) = 0.01 { (44 0.01)2 — 42 = 4.01% — 42 = 0.0801
} (4+0.001)? — 4% = 4.0012 — 42 = 0.008001
|
|

(=]

[=]

00 e 2

o =}
frt

I

oo

o

—
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Focusing on the right-hand column of the table above, we see average rate of change getting
arbitrarily close to 8, as Az gets small. In fact, the bottom entry

(8+ Azx)

in the right-hand column would equal 8 if we let Az = 0.

~

The number 8 is the limit, as Az goes to zero of the average rate of change over
4<z<(4+Azx),

denoted
2 . 42
lim [average rate of change over 4 <z < (4 + Az)] = lim [(4 d ] = lim [8+ Az]=38.
Az—0 z—0 Az Az—0

That limiting number 8 is called the (instantaneous) rate of change or slope or derivative
ofy=z2%at x =4.

We also say that the average rate of change converges to the derivative.
Remark 2.10. When 7 is time and y is distance traveled, the average rate of change of y is average

velocity and the instantaneous rate of change is instantaneous velocity, the number you'd see if a
speedometer were attached to the moving body.
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CHAPTER III: AREA OF RECTANGLES LEADS TO INTEGRAL
~

In this chapter we will get the area between y = 23,y = 0 and z = 1, that is, the area of
{(z,y)|0<z <1, 0<y <2’}
by approximating with rectangles.

\/A ‘

DRAWING 3.1 ;
Bn =2 K

X

1

All we need to begin is the area of a rectangle, as in DRAWING 1.12. We can approximate the
area in DRAWING 3.1 by putting it inside rectangles. In DRAWINGSs 3.2-3.5, the red-shaded area
is approximating the black-shaded area of DRAWING 3.1 that we seek. Let n be the number of
rectangles. Here is an approximation with n = 1, only one rectangle.

DRAWING 3.2




16

Here is an approximation with n = 2, two rectangles.

3
? § (—L)’,%+ lg’z'l
L | [ o
// = ’i(@‘ﬂ)T 17
.
77
/)

3 L
l

4 7
/f

|
h |

This is an improvement over one rectangle, but still not so good. The more rectangles, the closer
we can hug the curve and the better the approximation. Here’s an approximation with n = 5, five

rectangles.

DRAWING 3.4 CL r PGL —




I §

In general, let’s put n red-shaded rectangles of equal bases with upper right vertex on the curve
of y = z3, covering the black-shaded area in DRAWING 3.1, and calculate their total area.

DRAWING 3.5 5y

The total sum of areas of red-shaded rectangles in DRAWING 3.5 is, adding up height times
base for each rectangle, from left to right (compare with DRAWINGs 3.3 and 3.4),

3 3 3
1 i | 2 1l 3 1 31 1
B) 2+ (3) 2+ (3) Lo (@) L= Lo vz emsm)
n n n n n n n n n

Now we need the following formula.

Sum of cubes 3.6. Forn=1,2,3,...,
n?(n+1)2

(P+22+38+...4n%) = 4

For example (compare to DRAWINGS 3.2-4),
12 %22 2 x 32
4 4

52 x 62

= 225.
1 5

n=1-1%= =1, n=2-(1342%) = =9, n=5— (13+234+334+4345%) =

Combine this with our calculation of sums of areas of rectangles after DRAWING 3.5, to get
the following.

3.7. SUM of AREAS of RECTANGLES in DRAWING 3.5 is
(n+1)2
4n?
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Let’s put this in a table. The first three entries will be from DRAWINGs 3.2—4, and what
remains will use 3.7.

~

TABLE 3.8.
number of rectangles | total area of rectangles
___.____I ______ } __________ i wew
_____________ | PP Y ST LI L. i Bl PO T
2 | % = 0.5625
R R s _o03
““““ w0 Eemes
gl ; o pm o
Ei N SRR
n : D = (34 & + 120

As the number of rectangles, denoted n, gets arbitrarily large, the fractions % and n—12 in the
bottom of the right-hand column get arbitrarily small (the reader should experiment with a calculator

to believe this). In words, the limit, as n — oo, of the total area of n rectangles equals %.
The shorthand is

lim [ total f n rectangles | = lim (= + — + —z ) = 1
nLIEO otal area ol n rectangles —ng:go 1 on 477,2 -—4

That % is the area of the figure in DRAWING 3.1. In the language of calculus, the integral of
y =z, from 0 to 1, is 1, denoted
1
/ 3 dr = 1
0 4

The integral sign [ is meant to be an “S” for “Sum” (of areas of rectangles).

Remarks 3.9. In our construction of rectangles, as in DRAWING 3.5, each subinterval of the z
axis used its right endpoint to determine the height of the rectangle; see DRAWING 3.10 below,
where, for 1 < k < n, we have drawn the kth rectangle from DRAWING 3.5, with base % <z< %
and height (£)3.
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DRAWING 3.10

(le-1) k

For each k, instead of the right endpoint, we could choose any point in that subinterval " 1l <
p< E > call said pomt T, to determine the height of the k** rectangle; that is, the k" rectangle has
base k l<z<k = and height (Zr)?, as in DRAWING 3.11 below.

DRAWING 3.11 '

—

<) T
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In particular, let’s try using the left endpoint of each subinterval for the height of the approxi-
matlng rectangle in DRAWING 3.12 below we have, for 1 < k < n, drawn the k** rectangle, with
base 521 <z < % and height (5=1)3. ~

5 %
DRAWING 3.12 g

=1 /f iz

(k-() <

(8 LN
Putting together all the rectangles, 1 < k < n, from DRAWING 3.12, produces the following
analogue of DRAWING 3.5. Notice that the rectangles in DRAWING 3.5 produce an overestimate

of the desired black-shaded area from DRAWING 3.1, while DRAWING 3.13 below produces an
underestimate.

—

DRAWING 3.13

Jes
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As with 3.7 and the bottom line of TABLE 3.8, let’s calculate, using 3.6, the sum of areas of
rectangles in DRAWING 3.13:

3.14.
0\31 %% 2\% 1 1 0 |
<—) —+<—> —+(—> —+...<(" )) —=—(0*+1]+28+...(n-1)?)
n n n n n n n n n

_1((n-1\ _ (n-1 (1 1,1
T 4 4 4?2 T \4 2n T 4n?2)’

which, as with the calculations after TABLE 3.8, has limit, as n — oo, of %.

Remark 3.15. Combining the overestimate of 3.7 and the underestimate of 3.14 tells us that, for
n=1,2,3,..., the desired black-shaded area in DRAWING 3.1, denoted fol 23 dz, is betweeen

1 1 1 i Ty
3 (ot et e Ajer SNl In g
(")(4 2n+4n2) . (2)(4+2n+4n2)

We can make both (1,) and (2,,) as close to 1 as we like. This implies that fol 23 dz = ;. This
argument is an example of the Method of Ezhaustion, practiced by the classical Greeks. Although
they did not have the idea of limit, the Method of Exhaustion has many similarities to limit; see |8,
Section 4.3].
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HOMEWORK

-

1. Find the derivative (slope) of y = z2 at 2 = 3 by approximating with the slope of the line
between

(3,9) and (3+ Az, (3+ Az)?),
for Az small.

You will need the formula
(a+b)? = a® + 2ab + b2

2. Find the derivative of y = z® at z = 2 by approximating with the slope of the line between
(2,8) and (2+ Az, (2+ Az)?),
for Az small.
You will need the formula
(a+b) = a® + 3a%b + 3ab® + b°.

3. Find the area fol z? dz between the x axis, z = 0,z = 1, and y = 22, that is, the area of
{(z,y)[0<2<1, 0<y<a?},
by approximating with rectangles.
You will need the formula

2
(12+22+32+'“+n2):n(n+1)( n+1)

6 A

forn=1,2,3,....

4. Let b > 0 be a fixed number. By using the approximations of slope, rate of change, or derivative
from Chapter II and the approximations of area, or integral, from Chapter III (3.9-3.14, with z3
replaced by b*, recommended), express

(derivative of b* at = = 0) ( / 1 b* da:)
in terms of b. )
You may find the following formula useful:
(I+r+r24+...r" 1Y) = ek

e N
forr#1,n=0,1,2,....




HOMEWORK HINTS

~

1. See Discussion 2.7, and replace z = 4 with z = 3, to produce the following analogue of TABLE
2.9.

TABLE I
To | change in z | change in y |  average rate of change
m st | e e s | = e it i e S e e e wrE  m—— =
4 | (4-3)=1 | (3+1)2-32=42_-32=7 | 1=7
| | I
3.1 I (3.1-3)=0.1 { (3+0.1)2-32=3.12-32 =0.61 : 961 —6.1
3.01 | (3.01 - 3) = 0.01 | (3+0.01)2-3%2=3.012-32=0.0601 | 00601 — 6.01
| | I
3.001 | (3.001-3)=0.001 | (3+0.001)2—3%=3.0012 - 32 =0.006001 | 0-006001 — 6.001
I | |
(B+Az) | (B+Az)-3=Az | (3+ Az)? — 32 = (6Az + (Az)?) | (Bh=t(Aa)) _ (64 Ag)

2. See Discussion 2.7 and replace z = 4 with z = 2 and y = 22 with y = 23, to produce the following
table, analogous to TABLE I above and TABLE 2.9.

TABLE II
To | change in z | change in y |  average rate of change
5| T elwr | espisowgon | Twlw
2.1 : (21-2)=0.1 i (240.1)3 — 23 =2.13 - 23 = 1.261 I L261 — 12.61
2.01 I (2.01 —2) = 0.01 I (24 0.01)% — 23 = 2.01% — 23 = 0.120601 i 0120601 — 12,0601
2.001 I (2.001 — 2) = 0.001 : (24 0.001)3 — 23 = 2.0013 — 2% = 0.012006001 I 0-012006001 — 12.006001
(2+ Az) E (2+Az)-2=Az E (2+ Az)® — 2% = (12Az + 6(Az)? + (Az)3) i (3382 +0{45)" +(6)")

— (12+ 6Az + (Az)?)
el | | e
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3. Throughout Chapter III, replace cubes with squares, including replacing the sum of cubes 3.6
with the sum of squares

1 ~
(12+22 43 ¢ ...n2) = Mt )6(2"+1),

forn=1,2,3,..., to produce the following table, analogous to TABLE 3.8.

TABLE III.
number of rectangles | total area of rectangles
R | T ma_y; T
RN |  ms_s_ges
C T
“““ o | T T T gElmlom
PR w0 : e l_gg?;)fél_=_2g_jg§;—=_o.;3;3g AN
T  imn mn v

(n+1)(2n+1) (_
6n S

4. Approximate fol b* dr with the sum of areas of rectangles
1 e
- (1407 + 0% +0% 4455
and the derivative of b® at z = 0 with the slope of the line from (0, 1) to (2, bw)

(b= — 1) X

T bl
both with n = 1,2,3,... large. 9 -
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HOMEWORK ANSWERS

1. In Table I in Homework Hint no. 1 let Az = 0 in the lower right-hand corner:

derivative = 6.

2. In Table IT in Homework Hint no. 2 let Az = 0 in the lower right-hand corner:

derivative = 12.

3. See TABLE III in Homework Hint no. 3.

As with Table 3.8, as the number of rectangles, denoted n, gets arbitrarily large, the fractions

<L and 6—,11; in the bottom of the right-hand column get arbitrarily small, so that

2n

1
/ z?dz = area of {(z,9)|0<z<1,0<y < z°} = lim | total area of n rectangles |
0 n—00

= lim L =+ - =+ 2

“n—o\3  2n 6n2) 3

4. For b # 1, argue as follows.
Denote

1 .
Inz—(1+b%+b%+b% 4o tb ,.‘)
n

for the approximation of fol b® dz with n rectangles and the derivative of b* at z = 0 with the slope
of the line from (0,1) to (2, b+)

_ (br -1

n

D,
Then, for any n =1,2,3,...,

D= % (1 bW+ (b%)2+ (b%)3 RPN (b%)n_l) D, = % <(§1__bb%))) ((bi_ 1)> = (b-1),

n

thus )
(derivative of b® at z = 0) (/ b* dx) =(b-1).
0

A different argument is needed for b= 1. Then D, =0 forn =1,2.,3,....
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