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FIBONACCI NUMBERS and THE GOLDEN RATIO MAGNIFICATION

~

This is one of a series of very short books on math, statistics, and physics called “Math Magnifi-
cations.” The “magnification” refers to focusing on a particular topic that is pivotal in or emblematic
of mathematics.

OUTLINE

This magnification will introduce golden rectangles and the golden ratio, a geometry subject of
great interest to the classical Greeks, and Fibonacci numbers, arising from a population model, from
the 13" century. Linear algebra, from the 19t" century, reveals a surprising relationship between the
golden ratio and Fibonacci numbers. This relationship is in the form of the fundamental calculus
concept of arbitrarily good approximations (known as a limit); specifically, the ratios of consecutive
Fibonacci numbers get arbitrarily close to the golden ratio.

The definition of the Fibonacci numbers is recursive; specifically, each term is the sum of the
previous two terms. We will outline how linear algebra produces a much more practical explicit
expression for each Fibonacci number.

The only prerequisites for this magnification (at least prior to the appendix) are first-year high
school algebra. We also assume the reader knows the definitions of polygons, pentagons, rectangles,
and squares. Reference [4] is more than sufficient.

For this magnification students will need a calculator that can calculate square roots and arbi-
trary integral powers.




CHAPTER I: Golden rectangles, golden sections, and the golden ratio.

~

Definitions 1.1. The length of a rectangle is the measure of the longer side, while the width is
the measure of the shorter side. If the rectangle is a square, this means the length and width are
the same, mainly the measure of any side.

Two rectangles are similar if they have the same ratio of length to width.

6 _

Examples 1.2. A 3 x 6 rectangle is similar to a 1 x 2 rectangle, since 3

the two rectangles, with millimeters for units.

%. We have drawn below
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i

Intuitively, similar rectangles have the same shape; one is a magnification of the other. By
zooming in to or out from a fixed rectangle, the naked eye sees similar rectangles.

Definition 1.3. A golden rectangle is a rectangle with the following property. If the largest
possible square is removed from one side of the original rectangle, the resulting smaller rectangle is
similar to the original rectangle.
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Equivalent Definition of Golden Rectangle 1.4. A golden rectangle is a rectangle with
the following property. If a square whose sides are the same measure as the length of the original
rectangle is pasted onto the original rectangle, the resulting larger rectangle is similar to the original
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Here is a quick argument for the equivalence of 1.3 and 1.4.
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Definition 1.5. The golden ratio, denoted ¢ (spelled “phi” and pronounced “fee”) is the length

divided by the width in a golden rectangle.
Equivalently, if a golden rectangle has width one, then its length is ¢. ~

¢ —> () ¢
1

—— -
/ Kd) k]
/|
, 1 |
We are assuming, without proof (to avoid mentioning the quadratic formula), that length divided
by width is the same in all golden rectangles.

If the reader is familiar with the quadratic formula, said reader should apply it to the picture
below Definition 1.5 to get the following number for ¢.
Theorem 1.6. ¢ = (1 + V5).

Proof: In the following drawing, we must compare ratios of length to width, as in Definition 1.3;
also see Definition 1.5. Denote by

——(1+\/_

our candidate for ¢.

By

Then -/]* &d)o -

1 1 __20+v5)  _201+v5) 1 _ %o
-0 I6-1) (B-Du+vH ~ G-1 —2¢tV=d=T

Comparing to Definition 1.5, this shows that ¢ = ¢g, as desired. O
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Remarks 1.7. The golden ratio ¢ appears in surprisingly many places. We will mention here
an appearance of particular interest to Pythagoreans, in a regular (equal sides and equal angles)
pentagon and the pentagram enclosed (see drawing below; the pentagram is drawn in red in the
second drawing).

For convenience, let P be a regular pentagon each side of which measures one. Then the distance
between nonconsecutive vertices of P is ¢; see drawing below.

See the Appendix for a proof (Theorem APP.2) of this result about ¢, and more assertions about
¢ and the pentagram drawn in red below.

1l
A\

Definitions 1.8. 1.3, 1.4, and 1.5 are special cases of golden sections. A golden section or golden
mean is two numbers such that the ratio of the larger number to the smaller number equals the
ratio of the sum of the two numbers to the larger number. See [1, page 64].

In symbols, this would be numbers z, y such that
y_z+y

s = (19

When z is width and y is length, this is Definition 1.4, of a golden rectangle; see the drawings
of 1.4, with x = w and y = £.

Here is a golden section that is a one-dimensional analogue of a golden rectangle. Given a line
segment from a point P to a point @, find a point R on the line segment so that, writing, for
arbitrary points A, B, AB for the distance from A to B,

PR  PQ
RQ PR

1. X

¢ Q

X

Letting y = PR and = = RQ, this becomes (1.9), so that g—g = ¢.




CHAPTER II: Fibonacci numbers (recursive definition).

Definition 2.1. The Fibonacci numbers Fy, F, Fy, F3, ... are defined recursively as follows.
Fh=0,F=1,...Fhyo=Fpt1+ F,, forn=0,1,2,3,... (2.1).
Thus
FB=Fi+F=140=1 F=FR+F=14+1=2 F4y=F3+F,=2+1=3, ....

See Examples 2.3(a) for more.

The recursive part of Definition 2.1 is
Fn+2 = Fn+1 =t Fn (22)1
defining each term as a fixed function of prior terms; in words, each term is the sum of the previous
two terms.

These numbers arise from a population model. Imagine an organism that lives forever, takes a
day after birth to mature, then has one offspring every day. Then it can be shown (see [2, 7.24 and
7.25, pages 629-634]) that, forn =0,1,2,3,...,

F,, = number of organisms in our kitchen sink n days from now,

if we start with nothing in our sink today and have one newborn organism placed in our sink
tomorrow.

The recursive definition (2.2) may now be stated as
(population now) = (population yesterday) + (population day before yesterday);

the first term in the sum is yesterday’s population surviving to today, and the second term in the
sum is each of the now-mature organisms giving birth. ’

Examples 2.3. (a) Find Fj,.

(b) Suppose Fyj2 = 123,456 and Fi13 = 199, 750 (they don’t; but hypothetically suppose they do).
Find F114.

(c) Again hypothetically suppose Fa3g = 1,000,398 and Fa3s = 2,620, 821 (they don’t). Find Fbs,
and F234.

Solutions. (a) With our recursive definition (2.2), we can calculate F,, only for n advancing
consecutively: we have already calculated F3 and Fy above, so proceed patiently further:
F5:F4+F3=3+2=5; F6:F5+F4:5+3=8; F7=F6+F5=8+5= 13;
Fo=F+Fs=13+8=21; Fy=Fg+ Fy=21+13=34;
and, finally,
Fig= Fg+ Fg = 34 4+ 21 = 55.
(b) The recursive definition (2.2) tells us to add:
Fi14 = Fi13+ Fi12 = 199, 750 + 123, 456 = 323, 206.

(c) Again apply (2.2):
2,620, 821 = Fy3p = F31 + Fazgp = Fa31 + 1,000, 398,
so that a spot of algebra tells us that
Fr31 = 2,620,821 — 1,000, 398 = 1, 620, 423.




For Fy34, using (2.2), we need
Fy33 = Faga + Fo31 = 2,620,821 + 1,620,423 = 4, 241, 244;

now
Fa34 = Fy33 + Fa3p = 4,241,244 + 2,620, 821 = 6, 862, 065.

Remarks 2.4. In Examples 2.3(a) we saw the inefficiency of the recursive definition 2.1. Using this
definition, if we wanted Fi 00,000, we would have to use (2.2) to first get F,, then F3, then Fj,...;

b

we are talking about 999,999 acts of arithmetic. Even if we only cared about F} gg0,000, We would
still have no choice but to also get F» through Fogg g99.

To motivate the sort of expression for F, that we’d like to have, let’s consider a simpler popu-
lation model: a population in our kitchen sink doubles every day. Let

P, = number of organisms in our kitchen sink n days from now,

if we start with one organism placed in our sink today.

The recursive definition of Py, Py, Py, Ps, ... is
P,y =2P, (n=0,1,2,3,...) (2.5),
Py=1.

Notice now that
Po=1=2, P=2=2', P,=4=2% P=8=2%..;
we might believe that, for any n =0,1,2, 3,4, ...,
B, =2" (2.6).
The formula (2.6) is an ezplicit representation, or closed form for P,. If, as with the second sentence

of Remarks 2.4, we wanted Pj goo,000, With (2.6) we can immediately write down

1,000,000
P 000,000 = 2 :

without worrying about the unwanted, intermediate populations Py, Ps, P3, . . . Pygg ggg.

We'd like a closed form for the Fibonacci numbers, analogous to (2.6). This will be put off until
Chapter IV. Because one of the consequences of the closed form we’ll obtain in Chapter IV will be
quite surprising connections between Fibonacci numbers and the golden ratio (Definition 1.5), we
will first (in Chapter III) present some hints about these connections.




CHAPTER III:

Some clues about the relationship between Fibonacci numbers and the golden ratio.
~

Construction 3.1. For n = 0,1,2,..., form a rectangle, denoted R,, with sides F,, and F,,,
where Fy, F1, Fo, F3... are the Fibonacci numbers of Definition 2.1.

' Pr\ﬂh

Analogous to 1.4, adjoin a square whose sides measure the length of R,,. We now have a rectangle
of width F,; and length (F,+1 + F},) = F,, 42, by the recursive definition of the Fibonacci numbers

(2.2).
F:H' \ Fn‘r \

=7

3]

We now see that, for n = 0,1,2,3,..., R,y is formed from R,, by pasting on the square of
width and length F, i, analogous to 1.4. On the graph paper on the page after next, we have
drawn in Ro. Ry, Ro, R3, and R4, and have requested that you, the reader, draw in Rs and Rg; the
subsequent page has R; and Rg drawn in.

If, for some n, R, were a golden rectangle, then R,,.; would be similar to R,,, Ry 42 would be
similar to Ry41, hence similar to R,; in fact, for any k¥ > n, Rx would be similar to R,,. By our
definition of Ry and F}, said similarity would be equivalent to the ratios of each Fibonacci number
to its immediate predecessor becoming equal:

F n ;
_kﬂ:ﬁ, for k=(n+1),(n+2),(n+3),... (3.2).
E}, F,
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We don’t quite get R, to be a golden rectangle, for any n. But staring at the drawings of R,
on the next page and the page after that, you might notice, as n gets larger, that R, is looking
almost similar to Ry; that is, R, is “looking” “almost” “like” a golden rectangle. ™~

We can avoid the quotation marks, and the ambiguities they conceal, by invoking (3.2). On
the page after the next two graph paper pages, we have put a worksheet of ratios of each Fibonacci
number to its (immediate) predecessor. We have filled in the first few rows, and ask the reader to
fill in the remaining ones; the page after the page just described has all the rows filled in. Keep in
mind, as you peruse the column of ratios, that the golden ratio ¢ of Definition 1.5 equals %(1 +/5),
whose decimal expansion is 1.618033989.. ..

The last-mentioned two pages have an additional column, that approximates each Fibonacci
number with ¢ times its (immediate) predecessor. Here is the motivation.

If, in the immortal words of a recent paragraph, R, is “looking” “almost” “like” a golden
rectangle, then (3.2) suggests that F;;:‘ , the ratio of length to width in R,,, should be getting close
to ¢, the ratio of length to width in a golden rectangle. In symbols, we expect, at least for large n,

Fn+1
F, ~¢ (3.3),

where ~ means “approximately equal to.” Multiplying out the denominator in (3.3) gives
Fop1~¢x F, (3.4)

an approximation we hope to motivate with the last column of the worksheet appearing after the
two pages of graph paper.

Example 3.5. If F37 = 57,000 (it doesn’t, but hypothetically pretend it does), use (3.4) to
(a) approximate Fjg;
(b) approximate F3g; and
(c) approximate F3g.
Round all answers to the nearest integer.
Solutions. (a) F3g ~ ¢ x F37 = 1(1+ /5) x 57,000 ~ 92, 228.

(b) ¢ x Fyg ~ Far, thus Fye ~ 52 = 77100 ~ 35,228,

(c) F3o ~ ¢ x F3g ~ 2(1+ V/5) x 92,228 ~ 149, 228.

Remark 3.6. (3.4) is like (2.2) in that it defines (approximately) F,, recursively, that is, in terms
of Fy for k < n. The advantage of (3.4) over (2.2) is that (2.2) requires the prior two values of
Fy to get F,, while (3.4) requires only the prior value of Fy to get (approximately) F),. In terms
of the population model the Fibonacci numbers represent (see Definition 2.1), (2.2) requires the
populations both yesterday and the day before yesterday, while (3.4) requires only the population
yesterday. The disadvantage of (3.4) over (2.2) is that (3.4) is only an approximation.
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In the following, round to five decimal places in the right-most column and to seven decimal
places in the column immediately to the left of the right-most column.

~
Recall that Fy =0, and F; = 1, and
1
6=+ V/5) ~ 1.6180340
(don’t use a decimal approximation of ¢ when multiplying by ¢; use ¢ = %(1 +v5)).

The reader should fill in all the empty entries in the table below; said reader may check the next
page for correctness.

TABLE 3.7, to be filled in

N Fibonacci number Fy = ratio of Fibonacci number golden ratio times
sum of previous two to immediate predecessor immediate predecessor
Fibonacci numbers

2 F=1=1+0 1=1 ¢ x 1~ 1.61803
3 F3=2=1+1 2=2 ¢ x 1~ 1.61803
4 Fy=3=2+1 =15 ¢ x 2 ~ 3.23607
5 Fs=5=3+2 2 ~ 1.6666667 ¢ x 3 ~ 4.85410
6 Fe=8=5+3 2=16 ¢ x 5 ~ 8.09017
7 F;=13=8+5 ¥=1625 ¢ x 8 ~ 12.94427
8 Fg=21=13+38 # ~ 1.6153846 ¢ x 13 ~ 21.03444
9 Fo=34=21+13

10 Fio=55=34+21

11 Fiy =

12 Fip =

13 Fi3 =

14 Fiy=

15 Fi5 =

16 Fig=

17 Fi7 =

18' Flgz
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In the following, we will round to five decimal places in the right-most column and to seven

decimal places in the column immediately to the left of the right-most column.

~N

Recall that Fy =0, and F; = 1, and

1
¢=51+ V5) ~ 1.6180340

(don’t use a decimal approximation of ¢ when multiplying by ¢; use ¢ = %(1 +/5)).

10

11

12

13

14

15

16

17

18

TABLE 3.7, completed

Fibonacci number Fy =
sum of previous two

ratio of Fibonacci number
to immediate predecessor

golden ratio times
immediate predecessor

Fibonacci numbers

Fo=1=1+0
F3=2=1+1
Fy=3=2+1
Fs=5=3+42
Fo=8=5+3
F;=13=8+5

Fg=21=13+8
Fo=34=21+13
Fio=55=34+21
Fi;=89=55+34

Fip =144 =89+ 55
Fi3 = 233 = 144 + 89
Fia=377=233+144
Fi5 = 610 = 377 + 233
Fig = 987 = 610 + 377

Fy7 = 1,597 = 987 + 610

Fi1g3 = 2,584 = 1,597 + 987

2 =1625
2L ~ 1.6153846
31 ~1.6190476
22 ~ 1.6176471
8 ~ 1.6181818
e ~ 1.6179775
228 ~ 1.6180556
3T ~ 1.6180258
819 ~1.6180371
87 ~ 1.6180328
ol ~ 1.6180344

2584

¢ x 1~ 1.61803
¢ x 1 ~ 1.61803
¢ x 2 ~ 3.23607
¢ x 3 ~ 4.85410
¢ x 5 ~ 8.09017
¢ x 8 ~ 12.94427
¢ x 13 ~ 21.03444
¢ x 21 ~ 33.97871
¢ x 34 ~ 55.01316
¢ x 55 ~ 88.99187
¢ x 89 ~ 144.00503
¢ x 144 ~ 232.99689
¢ x 233 ~ 377.00192
¢ x 377 ~ 609.99881
¢ x 610 ~ 987.00073
¢ x 987 ~ 1596.99955

¢ x 1597 ~ 2584.00028
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CHAPTER IV: Linear algebra produces explicit closed form of Fibonacci numbers.

~N

We will only outline the linear algebra (vectors and matrices) required to deal with the Fibonacci
numbers; we wish to make no assumptions or requirements about linear algebra knowledge for this
magnification. See [2] for an exposition of linear algebra.

Definitions and Terminology 4.1. Let Fy, Fy, F,... be the Fibonacci numbers of Definition
2.1.

The linear algebra approach is to put together consecutive Fibonacci numbers

] k=0,1,2,... (4.2)
+

The object Ty is called a vector. Note that Zj contains both the width and length of the rectangle
Ry formed from Fibonacci numbers in Chapter III.

Let’s look more closely at the sequence of vectors {7}, defined by (4.2):

2o 2 21 s _[Fer] [ Fam J_[0 1 [F]_[0 1].
0= 1| 1= 1]’ 2= ] R n+l — F'n,+2 - Fn+Fn+] = 1 1 Fn+1 = 11 i Tn,

n=0,1,2,3,...; in the expression for Z,,;, we have pulled out the coefficients of F,, and F,.; to
form what is called a matriz. If we denote this matrix by
_ 101
a=[r ]

(4.2) has the form

Tn41 = AZ, (4.2 rewritten),
a recursive definition of the sequence of vectors {Z,}32 . This is only a restating of (2.2), but it
looks very much like the recursion P,;; = 2P, in Remarks 2.4. The same reasoning as in Remarks

2.4 suggests that

Fn = A™Fp = A" m 4.3),

where, as with numbers, A™ denotes A multiplied by itself n times.

A

ARA oe-
UL

n '\‘errM

)11
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Needed Factoids 4.4. We need to use, without proof, the following from [2, 8.17, pages 676-682].

Define ~
o (1—\/5)] q_[(1+\/5)] A=l =1 = =
3 3 — B _ 1+Jg, A = 1—\/5, a :—, a = -
i [_2 g [ 1= 504VE), XN =30-VE), ar= Tz =
Then
Ayt = Mii1, A = Aaip, (4.5)
and

0 ~ -
H = + a2tz (4.6).

In the language of linear algebra, 7, and > are eigenvectors, with corresponding eigenvalues A\

is a linear combination of 7, and 7.

and Ap. Still speaking this language, [(1)]

(4.2), (4.3), (4.6), and (4.5), in that order, now imply that, for N =0,1,2,3,...,

F 0 - . = = = ~
[FN]j-l] = AN [1] = AN (1§ + a2ip) = 01 AN §1 4+ 02 AV G = ar MV + a2\ s,

so that
1 1 1
Fy=a\ (1 - VB) + Ay (1+V5) =--- = 7 (31 + VE)N - (G- \/5))N] ;
where “...” here means unpleasant calculation; see [2, page 681]

Since 715| 11-VB)IN < 3 and we know Fly is an integer, we can combine what we just calculated
for F to get the following two closed forms for Fl.

Theorem 4.7. For N =0,1,2,3,...,
(a) Fv = 2= [+ VB)N = (3(1 - VB)M],
and

(b) Fy is the integer closest to 713 [(3(1+ \/5))]N

Example 4.8. (a) Fi2 = Jz [(3(1+ v5))*2 - (4(1 - v5))'?] = 144.

It is surprising that these combinations of rational numbers and /5 come out to an integer, as
Definition 2.1 guarantees.
If we wanted to save calculations, we could’ve calculated

L
V5

and then observed that 144 is the closest integer.
Recall that, using the recursive definition of the Fibonacci number Fis, as in (2.2), would’ve
required

Fo=0F=1-F=140=1,F3=14+1=2,F; =241 =3,F5 =342 =5,Fs = 5+3 = 8, F; = 845 = 13,
Fg =13+8=21,F3=21+13=34,F9=34+21 =55,F; =55+ 34 =89, F1o = 89 + 55 = 144.

(b)

1 12
[(5(1 + \/5))] — 144.0013889.....,

1 17
[(5(1 + \/5))] = 1596.999875. . .,

Sl

thus Fi7 = 1597.
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Staring at Theorem 4.7(a) tells us that

Fv< 2 [dasvB)] -

when N is even and
1 [1 \/_]N
Fy>—|(=(1+ V5
v> = |Ga+ve)

when N is odd, because (1 — v/5) < 0, hence (1 — v/5)" is positive when N is even and is negative
when N is odd.

Remark 4.9. The dominant term, %(1 - \/E_)), in the closed forms for Fy, is the golden ratio
(Definition 1.5).

Remark 4.10. The closed form in Theorem 4.7(a) was first obtained by deMoivre, in 1730, using
power series, meaning functions defined by infinite sums of powers of z,

f(x) =ap+ a1z +agzx? +...

Specifically, use the Fibonacci numbers for the coefficients of z*:
f(x)=Fo+ Fiz + Foz® + ...,
then the recursive definition (2.2) implies (after some work) that
(z +2%) f(z) = f(z) - =,

so that
T

f(x) = (l_x_x2)'
See [5, Section 9.6] and [1, pages 123-124] for more details and the remainder of the argument.
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CHAPTER V: Fibonacci numbers and the golden ratio.

~N

Theorem 4.7 will allow us to prove (3.3) (see Table 3.7 for motivation for (3.3)). Let’s return to
denoting the golden ratio (Definition 1.5) by ¢; in 4.4 we were shocked to discover that, of the two
eigenvalues we denoted A1 and A2, one of them (1)), turned out to be ¢.

The closed form for Fibonacci numbers in Theorem 4.7(a) states explicitly the approximation
n

L
Far 2

= Lila— e
- TEl=Zha-var,

which, since |3(1 — v/5)| < 1, gets arbitrarily small as n gets large.

(5.1),

since
|Fn

We could use (5.1):

n+41
Fn+1 - (%) =5
F (%

or we could be more precise: denoting, as in Chapter IV, Ay = 1(1 — v/5), Theorem 4.7(a) tells us
2
R A M I P Vs _ (-G

Fy zOm=x) (4" -p) (@ ={Ep

which gets arbitrarily close to ¢ as n gets large, since |%| <1,

In the language of calculus, (3.3) is saying that Faty converges to ¢, or
Fn

. Fn+1
| = :
im 7 ¢ (5.2),

n—oo n

short for “the limit, as n goes to oo, of %‘i, is ¢”.

In more conversational English, both (3.3) and (5.1) are describing long term or asymptotic

behavior of {% el
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CHAPTER VI: Generalized Fibonacci numbers and the golden ratio.

~

Definition 6.1. A sequence of nonnegative numbers {G}}32, that satisfies the same recursion
relation as (2.2):
Gn+1 = Gn+1 +G, n=0,1,2,3,...

is sometimes called a generalized Fibonacci sequence; the numbers Gy, G1,Go, ... are then
generalized Fibonacci numbers.

The generalization over Fibonacci numbers is that Gy and G are not specified.

Our goal in this chapter is to generalize some of the results in Chapters IV and V to generalized
Fibonacci numbers. Most of the arguments are the same as those in Chapters IV and V, thus we
will only sketch them.

Definitions 6.2. As in (4.2), define, for £k =0,1,2,3,...,
- I Gg
e |:Gk+1:| L

Let A, %1, %2, A1, A2 be as in 4.1 and 4.4. We still have (4.5). In place of (4.3), we have

- n,— n G
Wy, = Alg = A [G?] (6.3).

It is a fact, that we will not prove (see [2, Definition 6.32, pages 439-440]), that there are
numbers ; and (32 such that

Wo = Py + P2y (6.4).

Arguing as in Chapter IV prior to the statement of Theorem 4.7, we have the following analogue
of Theorem 4.7, with (31, 82 replacing a1, as of (4.6). Recall that )\, is the golden ratio ¢ of Definition
1.5.

Theorem 6.5. For N =0,1,2,3,...,
(a) Gn =B (1 — V5) + B2 MY (1 + V5),
and

(b) If Go and G are integers, then Gy is the integer closest to 5; AN (1 — v/5).

We may now generalize (3.3), arguing as in Chapter V. For n =0,1,2,3,...,
Gni1 _ BT (1= VE) + 823 (1 4+ V) Bida(l = VB) + Bare(32)™(1 + V5)
Gn BT (1 — V/5) + B2A3(1 + V/5) B1(1 —V5) + B2(32)™(1 + V/5)

which gets arbitrarily close to \; = ¢ as n gets large, since |f\xf| < 1.

In the language of (3.3),

Gn+1 3
o~ (6.6)

n
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in the language of calculus, as in (5.2),

lim Gnt1

n—oo

:¢- ~

n

Remarks 6.7. As in Construction 3.1, we may use a generalized Fibonacci sequence Gg, G1, G, . . .
to form rectangles R, of length G, 11 and width G,,, n = 0,1,2,...; the difference from 3.1 is that
Ry and R, could be arbitrary rectangles.

il Lo TR0 B &ma
(‘Fn /// Kh/// / ///

C—‘ﬂ+2. ' )

G /7,

—_——

Stated informally, (6.6) is saying that, regardless of Ry and R;, the rectangles R, are getting
arbitrarily close to a golden rectangle, as n gets large.
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CHAPTER VII: Some comments about the evolution of ideas.

~

Most answers to questions lead to many more questions and ideas. For example, the germ
explanation of disease leads inevitably to the field of bacteriology. Answering the question of whether
Euclid’s parallel postulate follows from his other postulates (the answer is “yes and no”; the parallel
postulate is independent of Euclid’s other postulates) led to non-Euclidean geometry, including the
mathematical model for general relativity.

Partly counterbalancing the explosion of natural questions and subject matters is the fact that
ideas grow back on themselves. We have seen in this magnification the idea of the golden ratio
from classical Greek mathematics, roughly, in its prime, from 500-200 BC, then we saw Fibonacci
numbers arising in the 13" century from a population model. These are seemingly much different
ideas, in different cultures, studied by different people. It should be quite surprising that another
quite different looking idea, linear algebra, from the 19t century, relates the golden ratio and
Fibonacci numbers, as outlined in Chapters IV through VI.

In physics, electricity and magnetism is another example of a pair of seemingly unrelated sub-
jects, studied for centuries as different ideas by different people, until they were unified; in this case
by Maxwell’s Equations in the 19t century.

Another phenomenon in the history of ideas is illustrated by the initial discovery of Theorem
4.7(a) using calculus (see Remark 4.10). More than 100 years later, a more elementary proof (using
linear algebra) became possible. Over time, ideas not only grow back on themselves, but are sim-
plified as they are better understood; like the clarity that results from the settling of silt in a river,
fundamental ideas are sifted out from what turns out to be unnecessary complexity.
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APPENDIX: the golden ratio in pentagrams.

The proofs in this section require some knowledge of complex numbers and trigonometry, as in
[3]. All angles will be measured in radians.

Recall the drawing (in red) of a pentagram inside a regular pentagon, in Remarks 1.7. We will
prove (Theorem APP.2) the following result from Remarks 1.7: in a regular polygon each side of
which measures one, the distance between nonconsecutive vertices is ¢, the golden ratio of Definition
1.5. This will be preceded (Theorem APP.1) by a surprising result relating ¢ to a certain cosine.
We will conclude with some assertions without proof of more relationships between pentagrams, ¢,
and the angle ¥ about to appear in Theorem APP.1.

Connoisseurs of trigonometry notice that the number of angles with clean, closed expressions
for cosines and sines are sparse; among angles strictly between 0 and %, %> 1> and § are usually the
only angles one memorizes sines and cosines of. Thus we should be surprised to find the following
result for the cosine of %, where ¢ is the golden ratio of Definition 1.5. See [1, pages 73-74] for
similar techniques with the angle 2?”

Theorem APP.1. ¢ = 2cos(%).

Proof. Denote 6 = £,z = cos(f) and y = sin(#). Then, denoting by “Im” the imaginary part (of a
complex number),
0 =Im(-1) =Im(e") = Im ((¢*)’) = Im ((z + iy)®)
= Im (2° + 52 (iy) + 1023 (iy)* + 1022 (iy)® + 5z(iy)* + (iy)®) = (5z'y — 102%y° + ¢°)
which is equivalent to
0 = (5z* — 10z%y® + y*) = (52" — 102°(1 — 2?) + (1 — 22)?) = 5211022 4+10z* +1—-222+2* = 16(z2)2—122%+1,
so that i .
2’ = = (12 VI —62) = - (3£ V5).

To see that z? cannot equal % (3 - \/5) , note that, since cosine is decreasing on (0, §),

™ T
<< <2
0<6< <4<2

implies that

V3 T T 1
5 = cos((g) > cos(f#) > cos (Z) =7
so that 5 )
e 2__ 3. 31
1> (cos(0))” =z* > X
meanwhile,
1 1 ! "
8(3—\/5)<§(3—2) s <3<z
Thus

Compare this now to

(%cﬁ)z -3 (%(1+ \/5))2 = 2 (1+2v5+5) = 13+ V5)

We see that 22 = (3¢)” ; since both z and 1¢ are positive, this implies that = = 10, as desired. [
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Now we will use Theorem APP.1 and trigonometry to prove the following pentagram result,

from Remarks 1.7.
~

Theorem APP.2. In a regular pentagon whose sides measure one, the distance between any pair
of nonconsecutive vertices is ¢.

——

Proof: This will primarily be a sequence of drawings, beginning with the drawing below the state-
ment of Theorem APP.2.

Draw a line from the left-most vertex to the red line between vertices, perpendicular to said red
line.

By the Pythagorean theorem, the two right triangles formed have corresponding sides of equal
measure; in the drawing below, y? = 1 — 22 = 33.

l v,
1\ | 4%

By looking at cosines, we now see that the two angles formed at the left-most vertex are of equal
measure; in the drawing below, cos(6;) = z = cos(62).
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For the shared measure of the angles 6; and 6>, we need a separate argument. By drawing the
pentagon as a union of three triangles, using the fact that the sum of the measures of interior angles

in a triangle is 7, combined with the fact that a regular polygon has equal angles, we see that each

interior angle in a regular pentagon measures %"

Thus we may fill in angles in our penultimate drawing: since 6; and 6, are of equal measure,
they each measure %, so that the remaining angle in each right triangle measures
3 T

_(14__ = =
TaTw Ty

Finally, Theorem APP.1 allows us to fill in the measures of the two halves of the red line, so
that they add up to ¢. a
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Some other results about ¢, ¥, and pentagrams APP.3. We mention here, in pictures, two
results about the pentagram in a pentagon, as in Remarks 1.7, without proof (some algebra and
invocation of results about similar triangles would do the trick). ~

Each drawing below is of a pentagram in a regular pentagon, with each side of the pentagon
measuring one.
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HOMEWORK

1. Use only Definition 2.1 and Table 3.7 to get Fig and Fby.
HINT: Examples 2.3.

2. Use Theorem 4.7(b) to get Fas.
HINT: Example 4.8.

3. Suppose Fg3 = 6,557,470, 322, 000,000,000, 000 and Fg; = 2, 504, 730, 784,000, 000, 000, 000. Use
only Definition 2.1 to get the following.

(a) Fe2. (b) Fea. (c) Feo.
HINT: Examples 2.3.

4. Suppose F3q = 832,040. Use (3.3) to approximate each of the following.

(a) F31. (b) Fa9. (c) F3o.
HINT: Example 3.5.

5. Suppose Gy =4,G;, =5, and, forn =0,1,2,3,...,
Gn+2 = Gn+1 +Gn.
(a) Get G2,G3,Gy,...,G1p.
HINT: Go=G1+Go=54+4=9,G3=G2+G1=9+5=14,...

(b) Use (6.6) to approximate (round each answer to three decimal places) G2, G3,Gy, ..., G1o.
HINT: For each n = 2,3,4,...,9, use G, from (a) and (6.6) to approximate G, 1.

(c) For Fy, F1, Fs, ... the Fibonacci numbers, get
(Go — Fo),(G1 — F1),(G2 — F3),...(G1o — Fio).
Describe the sequence (G, — F,),n =0,1,2,3..., in the language of Chapter VI.
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HOMEWORK ANSWERS

~

1. Fig = Fig + Fi7 = 2,584 + 1,597 = 4,181; Fy = Fig + Fig = 4,181 + 2,584 = 6, 765.
2. J= (%) ~ 28,656.99999, so Fpg = 28, 657.

3. (a) Fe2 = Fe3 — Fe1 = 4,052,739, 538, 000,000, 000, 000.
(b) Fe3 + Fg2 = 10,610, 209, 860, 000, 000, 000, 000.
(c) Fs2 — Fg1 = 1,548,008, 754, 000, 000, 000, 000.

4. (a) ¢ x 832,040 ~ 1,346, 269.

(b) 8200 514,229

(c) ¢ x F3; ~2,178,309.

5. (a) We already have Gy = 4,G; = 5,G2 = 9, G3 = 14. Continue:
Gs=G3+G2=144+9=23,G5 =23+ 14 =37,G¢ = 37 + 23 = 60, G7 = 60 + 37 = 97,
Gs =97+ 60 =157,Gg = 157 + 97 = 254, G19 = 254 + 157 = 411.

(b)
Ga ~ ($xG1) = (%(1+\/5)x5) ~ 8.090, G~ (6xGs) = (%(1+\fs)x9) ~14.562, Gy ~ (6xGs) ~ 22.652,

Gs ~ (¢x23) ~ 37.215, Gg ~ (¢x37) ~ 59.867, G7 ~ (¢x60) ~ 97.082, Gg ~ (¢x97) ~ 156.949,
Gog ~ (¢ x 157) ~ 254.031, Gio ~ (¢ x 254) ~ 410.981.

Notice that, as n gets larger, the approximation of G+ in (b) is getting closer to the G4 in

(a); that is,
|Gn+1 — (¢ x Gp)|
gets smaller as n gets larger.
(c)
(Go—Fo) =4,(G1—F1) = 4,(G2—F) = 8,(G3—F3) = 12,(G4—Fy) = 20, (G5—F5) = 32, (G¢—Fs) = 52,
(G7 — Fy) = 84,(Gs — F3) = 136, (Gg — Fy) = 220, (G109 — F10) = 356.

The sequence (G, —F,),n=0,1,2,3... is a generalized Fibonacci sequence. You might believe

this by looking at (G, — F,,),n=0,1,2,3,... above, or, for a proof, note that
(Gnt2 — Fat2) = ((Gn+1 + Gn) — (Fpy1 + F)) = (Gny1 — Foq1) + (Gn — Fy)

for ni=0,1,2,3;..
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