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GEOMETRIC SUMS MAGNIFICATION

R

This is one of a series of very short books on math, statistics, and physics called “Math Magnifi-
cations.” The “magnification” refers to focusing on a particular topic that is pivotal in or emblematic
of mathematics.

OUTLINE

A geometric sequence is formed by multiplying by a fixed number; for example, the sequence 3,
6, 12, 24, is geometric because each term is twice the prior term. A geometric sum means adding
up the terms of a geometric sequence. Of particular interest is an infinite geometric sum: adding up
all the terms of an infinite geometric sequence.

We will derive a general formula for a geometric sum, and, after indicating where it can go
wrong, apply it to
1. One of Zeno’s paradoxes;
2. Repeating decimal expansions;

3. A dropped ball allowed to bounce up and down infinitely often: how far does it travel and how
long does it take to come to rest; and

4. The area of a popular fractal, the Koch Snowflake.

This magnification will expose the reader to calculus ideas and a smattering of physics and
exotic geometry.

For this magnification, students should be comfortable with exponents and algebraic terms, such
as

Q+r+r24r34...4 ).
They should also be able to simplify fractions, especially fractions divided by fractions.




One of Zeno’s paradoxes, in an updated form, is the following tragedy. I'm standing a yard
away from my recliner. I really want to sit in my recliner. To get to my recliner, I must travel half
a yard, then one quarter of a yard (half of the remaining distance), then one eighth of a yard, ....
That’s a sum of infinitely many distances, which our intuition tells us must be infinity.

I'am also concerned that each distance traveled takes some time, thus the time spent in traveling
infinitely many distances is the sum of infinitely many times, also (as guided by intuition) infinity.
This is saying I will never get there.

Zeno claimed to conclude that motion is an illusion. Distance is also not looking so coherent: is
the one yard to my recliner actually co yards?
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Example 1. Distance to recliner. Let’s look more closely at the problem. We are adding up
powers of %:

B el MY | I CFAN - ANt D
§+Z+§+1_6+:§ (5) +(§) +(§) o A
the dots “...” indicate a process (in this case multiplying by % and adding) that goes on forever.

When something eludes our understanding, it is good strategy to give it a name; it's a genial
bluff aimed at the seeming intimidation of challenging ideas. Define

)
-0 () -0+ (0) -

is to S; in particular, I can get nice cancellation by subtracting 15 from S:

1 1 1 1

Notice how similar
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The cancellation is more clear if we write our subtraction vertically, as follows.
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Since %S equals %, S must be one. This reassures us that the one yard to our recliner is not an
illusion.
~

For motion we need, in addition to the distance we just established, coherent (meaning at least
finite) time.

Example 2. Time to recliner. Let’s assume that, for k = 1,2,3,..., my time in travelling the

distance of (%)’c yards is (%)k seconds. Then our total time is

=3 () () ()

Simplification will occur this time by multiplying T by %, then subtracting from T, creating cancel-
lation as in Example 1:

=3 (3 0 6+ Q) ) (@) )+ ) () ) -2

so that T equals 2 seconds:
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Notice that, in the motion described in the previous calculation, my travel is getting arbitrarily

slow: for k = 1,2,3,..., since I'm traveling the distance of (%)k yards in (%)k seconds, that’s a
7 3
speed of E—% = (%)k yards per second. Despite my philosophical concerns slowing me down, I still
3

make it to my recliner.

Example 3. Find the sum (1 + %-i— (%)2 + (%)3 +.. ) .

Call the sum S. Then

e (1+§+(;)2+(§)3+...) i (g+(g)2+(g)3+...)

thus S = 3.

Definitions 4. For a and r real numbers, the sequence

a,ar,ar? ar3,. ..
is a geometric sequence. The number r is the common ratio of the sequence, the ratio of
consecutive terms.

The sum
a+ar+ar2+ar3+...
of a geometric sequence is called a geometric sum or geometric series.

In Example 1, a =r = %, in Example 2, a =r = %, and in Example 3, a =1 and r = %

We may argue as in Examples 1 through 3, to get a general formula for a geometric series.
Denoting

S=a+ar+ar’+ar®+...,
multiply by the common ratio and subtract:

(1-r)S=(a+ar+ar’+ar’+...) = (ar +ar’ + ar®* + +art...) = q;

written longhand,

§ 2(0L,+Cir+ &‘”l‘Faf‘)
_rG = (ardartg .

— a

(JET = B 9 g;('i-r/

(see Formda §)
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Formula 5 (not always true; see Theorem 7). For r # 1, (a +ar+ar’+ard+.. ) = -2

1-r°
~
4
Examples 6. (a) 1+%+%+é+---=1—_14§=§—:§. (a:1,r:%:—‘l‘-z-?-:...,theratio
of consecutive terms.)
(b)4+3+§+%+%+---=1—f§=%:16. (a=4,r=3)
(c)3—%+%—%+f—6—---=ﬁ—):%:2. (a=3,r=-1)
d1+2+4+8+---= %2 = —1?? (a = 1,r = 2.) SOMETHING is surely wrong: we're adding

1
up positive numbers and getting a negative number.

Theorem 7. Conditions for Formula 5. Formula 5 is true if and only if |r| < 1. We will argue
for this in Remarks 11(a).

Example 8. Repeating decimals. In a decimal expansion of a number, a horizontal line over a
set of consecutive integers denotes infinite repetition. For example,

3.27=3.2777..., 12.01284 = 12.012848484 ..., 0.0273 = 0.0273273273. ...

A repeating decimal always includes a geometric sum; e.g.,
17.13843 = 17.138434343 - - - = 17.138 + (0.00043 + 0.0000043 + 0.000000043 + - - - )

43 43 43
=17.138 —t—=+-—=+...);
% (105 4 107 i 109 * )
the expression in parentheses is a geometric sum with a = %, 7= ﬁ (see Definitions 4).

This means that we could use Formula 5 (see Theorem 7) to write a repeating decimal as a
fraction. But we will illustrate now an easier technique for repeating decimals.

In each of (a)-(d) below, write the repeating decimal as a fraction, that is, a ratio of integers.

(a) 0.T=0.111....
Call the decimal S. Then 10S = 1.111..., so that

9§ =10S-S=1:

{]_0€ - 101_/0_9_9:0




Thus S = 3.

Notice that 0.2 = 2,03 =2 = 3,..., and, strangest of all, 0.9 = 0.999 - - -

(b) 1.247 = 1.2474747 . ....
Call the decimal S. Then 100S = 124.747474 ..., so

995 =100S — S =123.5:

[006 E [”U—(—,7L(‘7L/’74 a a
[0147%7%&“

—
e— a—

9

=1

Al

Rt
qc]‘s - [13,6, —

(235
D i
qA0

. - _ 1235 _ 1235
giving us 995 = 123.5, so that S = 55> = 52,

(c) (left to reader) 3.21. (ANSWER: %)

(d) (left to reader) 0.05123. (ANSWER: gggot: HINT: writing S for the decimal, look at 9995 =

(1,000S — S))
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Example 9. Dropped ball, known elasticity. When a particular ball is dropped from a height

H, it rebounds to a height of 0.36H, 36% of its original height.

g 7 KO'%) H

Suppose this ball is dropped from a height of 4 feet.
(a) How far does the ball travel?

(b) How long before it stops bouncing?




(a) By Formula 5 (see Theorem 7), with a = 8(0.36), 7 = 0.36, our distance is
4+ [2x4x(0.36) +2 x4 x (0.36)% + 2 x 4 x (0.36)° +...]
_4 [2 X 4 % (0.36)] 44 8(0.36) 0.36 36 9 AT

s D RPN L LY .
1-036 06 —‘toog =4t g —4tg=g =85 (feet)

~

(b) We need the following physics factoid (see Remarks 11(b))): If an object is dropped from a
height of H feet, then the time it takes to hit the ground is

t=— ds.
4 seconds

Use this to change the distance drawing on the previous page into a time drawing:

. =30
— ~ Y
Y MR |
A Y
¢ L b (od] e

(f} me, in second))

Again use Formula 5, but now with a = (2%4@) 0.6 =0.6,7r = v0.36 = 0.6:

%—i— [2x%x(0.6)+2x%x(0.6)2+2x%x(0.6)3+...]
1 2 x 3 x (0.6) 1 0
‘§+[W + 04

(=]

+ = =2 (seconds).

N =
N W

T 2704
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Example 10. Koch snowflake. The Koch snowflake is an example of a fractal. Very informally,
a fractal looks the same when magnified.

This fractal behavior is in contrast to more familiar macroscopic curves or areas; for example,

your view of the coastline as you land in a helicopter: complexity and irregularity get smoothed and
flattened as you descend.

Define the Triangular Eructation Operation (TEO) on any polygon: Each side eructates
an equilateral triangle whose base has midpoint in the center of the side and length equal to one

third of the length of the side.

M /N @—-—/\f—/i—“‘
‘ 5/3 >/ 7

%S-——?

The Koch snowflake is constructed by beginning with an equilateral triangle then applying the
TEO infinitely often.

AL

TEO
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Notice that each application of the TEO multiplies the perimeter by %. Thus the Koch snowflake
has infinite perimeter. We shall see, however, that the Koch snowflake has finite area.

“
Beginning with an equilateral triangle of area one, for simplicity, I'd like the area of the resulting

Koch snowflake. We will focus on the area added by each application of the TEO, then put together
all those additions.

Notice, as we progress through the TEOs, that each application of the TEO multiplies the

number of sides by 4, while the triangles added have sides multiplied by :1;, hence area multiplied by
1

5= (%)2 This suggests (after the initial triangle of area one) that the total area added will be a
geometric sum, with common ratio r = %.

Each term expressing area added will be the prior number of sides times the area of the triangle
added on each side:

number of applications of TEO number of sides area of each triangle added total area added

0 3 1 1

1 (3 x 4) 3 3)x 3

2 (3 x 4%) (5)° (3x4) x (3)
3 (3 x 43) (3)3 (3x4?%) x (3)3

The area of the Koch snowflake is the sum of the areas in the rightmost column:

1+[(3)x%+(3x4)x(%)2+(3x42)x(%)3+(3x43)x(%)4+...]

=1+[(3><%)+(3x%)(4x%)+(3x%)(4x%)2+(3x%)(4x%)34-...]

3x i
=1+[A]=1+L=1+§:

8
1-(4x3) 9—4 5’

by Formula 5.

In general, the area of a Koch snowflake is g times the area of the initial triangle. The perimeter
is always infinity.

Stranger things can happen. The Sierpinski gasket is a fractal with zero area and infinite
perimeter.
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Remarks 11. (a) To make sense out of Formula 5, we must begin with something we do understand,
namely, for any positive integer n, the finite sum

Sp=(a+ar+ar’+---+ar"?),

the sum of the first n terms of the geometric series.
As with the infinite sum, cancellation causes
(1-7)Sp =8p — 1Sy, =a(1—r"),

so that (1)

a(l—r

Sp=——=-.

YT i-1)
The infinite sum of Theorem 5 by definition is a number that those finite sums S, get arbitrarily
close to as n gets arbitrarily large; in other words, as we add up more and more terms, we want the
finite sums to get close to (lﬁ—r) (In the language of calculus, (1;;) is the limit, as n goes to infinity,
of Sp, or S, converges to ﬁ;)

Looking at our expression for S,,, we need r™ to shrink arbitrarily close to zero as n gets large;
this happens precisely when |r| < 1.

(b) It can be shown, with a spot of calculus, that, if an object is dropped from a height hg, with
initial velocity vg, then the height above the ground, in feet, is
h(t) = ho + vot — 16t2,

where ¢ is the time, in seconds, after the object is dropped, at least until after the object hits the
ground (the only physics information needed, when armed with calculus, is the acceleration due to
gravity of 32 feet per second squared).

In Example 9, vg = 0 and hg is called H, so h

Setting h(t) = 0 and solving for t gives t =

—~~

t) = H — 16t2.

[

(c) Another paradox of Zeno leads to the general idea of infinite sums, at least of nonnegative terms.

Zeno considered a turtle s; feet in front of him, moving in the same direction. Zeno wishes to
catch up to the turtle. To do this, Zeno must first reach the spot where the turtle began; that is, he
must travel s; feet. Unfortunately, the turtle kept moving out of Zeno’s grasp; say the turtle is now
s2 feet in front of Zeno. Identically, Zeno must also travel s feet, only to find the turtle a distance,
call it s3, in front of him. Continuing in this way, we get an infinite sequence of positive numbers
S1, S92, 83, S4, - .. such that Zeno must travel

(s1+s2+83+84+...) feet

to catch up to the turtle. With the intuition (apparently false) that an infinite sum of positive
numbers must be infinite, the conclusion is that Zeno will never catch the turtle.
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HOMEWORK

1. Write each of the following as a ratio of integers.
(a) 2.04=2.0444....

(b) 1.72 = 1.727272... ..

(c) 0.01234 = 0.01234234234 ... .

2. Write each of the following as a ratio of integers

(8)2+3+3+....

b)1+3+5+35+....

GRS S B X B

3. A ball has elasticity 25%; that is, when dropped, it rebounds to 25% of its initial height. Suppose
this ball is dropped from a height of 9 feet.

(a) How far does the ball travel?

(b) How long before it stops bouncing?

4. Construct a new fractal, using squares instead of triangles as in Example 10, by starting with a
square of area one and applying the Square Eructation Operation (SEO) infinitely often, where

the SEO does the following to each side of a polygon, eructating a square of side % of the original
side, in the center of the original side:
sk

PR ey
- S — SEo S §/3

Here're the first two steps of the SEO applied to a square.

.__) g ©0 ¢

Find the area of the resulting fractal.
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HINTS for HOMEWORK

1. See Example 8.
2. Use Formula 5; take the ratio of consecutive terms for r.

3. See Example 9.
(a) 9+2x 9 x (0.25) +2 x 9 x (0.25)2 4+ 2 x 9 x (0.25)3 +...
(b) +2x 3 x(0.5)+2x 2 x(0.5)2+2x 2 x(0.53+...

4. See Example 10, especially the table describing the growth of area as we apply the TEO; here is
the analogous table for the SEO.

number of applications of SEO number of sides area of each square added total area added

0 4 1 1
1 (4 x 5) 3 (4) x 3
2 (4 x 52) (3)? (4 x 5) x (§)?

3 (4 x 5%) (

o=
~
w

(4 x5%) x (3)3




3. (a) 15 feet.

(b) % seconds.

4. 2.

ANSWERS to HOMEWORK
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