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√

x2
1 + x2

2 + . . . x2
n.
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our intuition suggests, that PW (~x) is the best approximation of ~x from W, that is, the point in W
closest to ~x.
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these behaviours to difference equations: among other things, the local behaviour of Section A is
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eigenvalue for A and ~x is an eigenvector for A. This is local behaviour like a diagonal matrix; in
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n = 1, 2, 3, . . . .



Appendix One: Rotation matrices. page 747
After some trigonometry, the standard matrices for arbitrary rotations are derived.

Appendix Two: Systems of differential equations. page 755
For those readers who have seen differentiation and exponential functions, we solve systems

of constant-coefficient differential equations with Chapter VIII methods, very analogously to our
solutions of difference equations.

Appendix Three: Pythagorean theorem. page 765
We prove the Pythagorean theorem, for right triangles with legs of length a and b, hypotenuse

of length c, by drawing two squares with sides of length (a + b), one containing a square of length
c, the other containing squares of lengths a and b.

Appendix Four: Angles between vectors. page 771
As in Appendix One, this requires some trigonometry. We show how the dot product can give

(or define in higher dimensions) the measure of arbitrary angles between arbitrary vectors. This
generalizes our use of the dot product in Chapter VI to characterize vectors with angles of measure
ninety degrees between them.
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