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MATRICES and MOTION MAGNIFICATION

~

This is one of a series of very short books on math, statistics, and physics called “Math Magnifi-

cations.” The “magnification” refers to focusing on a particular topic that is pivotal in or emblematic
of mathematics.

OUTLINE

A matrix is a rectangular array of numbers. We will present the algebra of matrices. By repre-
senting motions of interest (projection, reflection, and rotation) with matrices, we will become able
to extend geometry beyond what is visible to the naked eye, or even visualizable to the naked brain.
In particular, we can perform a dizzying sequence of motions, by multiplying the corresponding
matrices. Proofs are included for the curious, but are not needed for examples or homework.

This magnification will expose the reader to the interaction between algebra (calculation) and
geometry (pictures).

For this magnification, students should be familiar with lines and line segments, angles between,
and midpoints of, lines or line segments and the Cartesian plane (including distance between points
in the Cartesian plane) and be able to do products and sums (including negative numbers, decimals,
fractions, and irrational numbers) without calculators. Reference [4] is more than sufficient.

See [1] and (3] for a much more complete treatment of matrices.
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Definition 1. For m, n positive integers, an m x n (reads “m by n”) (real) matrix is a rectangular
array of m rows (horizontal sequences of n real numbers) and n columns (vertical sequences of m

real numbers) B
all a2 a3 s e A1n
a21 Q22 @23 ... Q2n
A= (G,,‘j) = 3
[@m1 Am2 Gm3 ... Qmn]

a;; denotes the ij'* entry, the number in the i** row and jt* column.

T 2
Example 2. A = |0 —1| is a (3 x 2) matrix, with rows [1 2] . [0 —1], and [2 1] , and
2 1
1 2
columns (0| and |—1| . The entry a;; = 1,a12 = 2, as; = 0, etc.
2 1

Definition 3. The transpose of the m x n matrix A, denoted AT (“A transpose”) is the n x m
matrix such that, for 1 < i <m, the i*" column of AT equals the it" row of A.

T 1 4
Example 4. I & =12 5
4 5 6 3 6

Definitions 5: Matrix algebra. Here we present multiplication of real numbers times matrices
and addition of matrices. Multiplication of matrices times matrices will appear in Definitions 12.

In these definitions, c is a real number, A is as in Definition 1, and

(611 b1z b1z ... b, ]
ba1 b2 bz ... bop
B = (b;) =
_bml bm2 bm3 v bmn_

Then cA = (cai;) and (A + B) = (as; + b;j); that is, addition and multiplication of matrices is
done entrywise.
The matrix A — B is defined to be A + (-1)B.

il 0_3‘1202_2404
Examples6.3[2]—[_1]—[7],2[0 11 1]_[0 9 9 2].

Definitions 7. For the remainder of this magnification, we will only consider m, n equal to 1 or 2
in Definition 1: (2 x 2) matrices [Z; 312] , (2 1) matrices (also called column 2-vectors) [Zl] ,

22 2
(1 x 2) matrices (also called row 2-vectors) [ay 0,2] ,and (1 x 1) matrices [a] , a number placed
in a box.




Notice that a row 2-vector is the transpose of a column 2-vector.

-
Definition 8: Pictorial convention. For any real ai, as, we will associate the column 2-vector
[21] with the point in the Cartesian plane (hereafter referred to as the plane) a; units to the right
2

of the origin and as units above the origin.

The statement “the point P = [Z;] ” refers to that correspondence.
‘g \(1, \\
Pl
aL = = (.
! |
T b5
x
Examples 9.
3 3
L
] o
— | B . SRR

Here is a result relating geometry to matrix algebra.

Proposition 10. Suppose P, Q, and R are points in the plane.

(a) Q is on the line segment between P and R if and only if (Q — P) = ¢(R — Q) for some positive
c if and only if Q = (1 — ¢)P + tR, for some t with 0 < ¢ < 1.

(b) Q is the midpoint of the line segment between P and R if and only if (Q-P)=(R - Q)ifand
only if Q = 1P +1R.

(U;I/O/ﬁ i (L) R
P ¢ >
P
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Examples 11. Suppose P equals [_12] and R equals [_41] :
R, s

(8) [(1’] is the midpoint of the line segment from P to R, since
HRHEERN
(G- =) -[51- (] -B):
(b) 4 ["51] is on the line segment between P and R but is not the midpoint, since
RET
G- -2 TG RN - ([-36])

(c) The origin O = [g

and

} is not on the line segment between P and R, since

[‘21] =0—P:C(R—0)=c[“41]

implies that —1 = ¢(—1) and 2 = ¢(4), impossible.

2 o }°

(0\(\

-

Notice that, as t goes from 0 to 1 in Proposition 10(a), Q = (1 — t)P +tR moves along the line
segment between P and R, from P to R.
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Definitions 12: Matrix multiplication. Historically, matrices first appeared as a way of solving
a set of linear equations, such as
z + 2y = 3 ~
4 + Sy = 6
by writing it as a single matrix equation
2| |z _ [3
s 3J6L-(

This rewriting leads to the following definitions, beginning with a row vector on the left times a
column vector on the right.

Fg.

[a1 as] [lg;] = [(a1b1 + azbs)] ;

that number (a1b; + a2bz) is the dot product or inner product of the vectors [Z;] and [ll;;] ; see
(1] and [3].

ann axz| [bi| _ [(a11b1 +a12b2)| . [a11 asz] (b1 bi2 _ [(@11b11 + a12b21)  (a11b12 + a12b22)
a1 asz| |ba (@21b1 + ag2b2) |’  |a21 ag2| |bo1  boo (@21b11 + az2b21)  (a21b12 + aobos)|

In general, one performs row-on-left times column-on-right wherever possible; here’s a less popular

example.
by _ |bhar biaz|
[bg] [al a2] B [b2a1 b2a2] ’
notice how different ([al as] [Z;]) and ([zl] [a1 a2]> are.
2

Examples 13.

3 : 3
1 2] H =[1x3+2x4]=[11]; [5 6] [4] =
0 0] [ o2] 3] 1 2][3 11 2
e e o P B i e R P
0 1 20_03%02_2001
0 0f |0 ) 0 0] |0 3||0 ’

With numbers, one gets the same product regardless of the order of operation: ab = ba, for
any real numbers a,b; that is, numerical multiplication commutes. The last example of matrix
multiplication shows that matrix multiplication does not commute, in general.

We will see numerous examples that might make this seem more natural, when we relate matrices
to motion in 15 through 19. In general, we want to think of matrix multiplication as doing things
to points or column vectors. For example, suppose you have a matrix A that represents “open the

window” and a matrix B that represents “put your head through the window.” Then you should
believe that

[5x3+6x4] =[39];

[A, followed by B| is not the same as (B, followed by A] .

Definition 14. The ((2 x 2)) identity matrix is I = [(1) O] .

Notice that, for any real z,y, I [;] = [:j . The identity matrix is the unique matrix that does

not change any vectors, when you multiply by it.




6

1 0

Examples 15. (a) If A= [O 1

] , then, for any real z, y,

g [Z] - [—my] '

l

0 0

(MHAEk .

] , then, for any real z,y,
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Notice the sense of motion, in passing from a point P = [:] to the new point P’ = A [I] . For

A= (1) _01] , that motion is called a reflection (through the z axis), while for A= [g (1)] , the

motion is called a projection (onto the y axis). See Definitions 17.

Matrix multiplication does something to points or vectors; in the examples just mentioned, but
in a more dynamic verb form, one matrix reflected through the z axis, while the other projected
onto the y axis.

Definitions 16. (See Definition 8.) Let A be an arbitrary (2 x 2) matrix. The motion, with

standard matrix A, is the rule that assigns, to each point P = [;] in the plane, the point P’ =

A [;] . This is denoted

[x]HAH, or PP, or [x]szP'zA[“].
y y y y

The point P’ is the image of P, under the motion.

A

J 'jP,

A more popular synonym for motion is a linear transformation from the plane to itself, a special
type of function or map. See [1].

Thus, from Examples 15,

has standard matrix [(1) _01] , while

has standard matrix [g (1)]

The challenge of interest is to start with a motion
P—P

and find the standard matrix for that motion.

/—%a/\j

X
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Definitions 17: Motions of interest. (a) Given an angle 6 (spelled “theta”, pronounced “thay-
tuh”), the (counterclockwise) rotation of angle 6 is the motion

P— P b

such that P’ is on the same circle centered at the origin as P and the counterclockwise angle, from
the line segment between the origin and P, and the line segment between the origin and P, is 6.

3

For (b) and (c), consider the following picture, where £ is a line through the origin and Q is a

point on /.

®
R

If the line segment from P to R is perpendicular to the line £ and Q is the midpoint of the line
segment from P to R, then

(b) P’ = Q is the projection of P onto ¢ and

(c) P’ = R is the reflection of P through .

For reflection, think of £ as a mirror; P’ = R is then literally the image, as in Definitions 16, of P.




]

Theorem 18: Standard matrices for Definitions 17. (a) For those who have seen trigonometry
cosf —sin 0]

~N

(trig), as in [2], the standard matrix is [sin 0 cosd

To avoid the necessity of trig, we will restrict ourselves to 6 equal to some multiples of 45 degrees.
See also Homework number 7.

With each of the following rotation matrices, we will illustrate its action by applying it to the
1
vector [1] 2

For a counterclockwise rotation of 45 degrees, the standard matrix is

1|

05’
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It follows, by squaring the 45 degree rotation matrix, that the standard matrix for counterclock-
wise rotation of 90 degrees is

@b DGR -6

f - 4 - b

a0’ /? P F . )
Sy

/ o -| |

We can next square the 90 degree matrix to get the standard matrix for rotation by 180 degrees:

DG D= 5=

notice that this performs a reflection through the origin: [_01 _01] [;] = :z] , for real z,y.
P - | P [ - |\ .
— |
-
~ U l
) —\ (
P’ g

For (b) and (c), let [Z] be a point other than the origin on the line ¢; that is, ¢ is the line

through the origin [g} and [Z] .

(b) The standard matrix for projection onto  is
1 a’? ab
a2+ b2 |ab b2|-

(c) The standard matrix for reflection through £ is

1 (a% — b?) 2ab
a2+b2| 2ab (®-a?)|"




Examples 19. All rotations are counterclockwise.

11

(a) Find the standard matrix for the following motion: rotate 45 degrees, then reflect-through y = 2z.

(b) Find the standard matrix for the following motion:

degrees.

(c) Find the standard matrix for the following motion:

1= —2.

(d) Find the standard matrix for the following motion:

degrees.

(e) Find the standard matrix for the following motion:
y = 3z.

(f) Find the standard matrix for the following motion:
degrees.

reflect through y = 2z, then rotate 45

rotate 90 degrees, then reflect through

reflect through y = —z, then rotate 90

rotate 180 degrees, then reflect through

reflect through y = 3z, then rotate 180

(g) Find the standard matrix for the following motion: project onto y = z, then rotate 90 degrees.

(h) Find the standard matrix for the following motion: rotate 90 degrees, then project onto y = z.

(i) Find the standard matrix for the following motion: project onto y = z, then rotate 90 degrees,

then project onto y = z.

(j) Find the standard matrix for the following motion: project onto 2y = —z, then reflect through

the y axis.

(k) Find the standard matrix for the following motion: project onto 2y = —z, then reflect through

the y axis, then rotate 90 degrees.

(¢) Find the image of the point [;

} under the motion in (a).

m) Find the image of the point . under the motion in (b).
0

(n) Find the image of the point {_53 under the motion in (c).

(o) Find the image of the point _11 under the motion in (g).

(p) Find the image of the point _11 under the motion in (h).

(q) Find the image of the point ‘,’7/73_ under the motion in (i).

a2

(r) Denote by A; = ;,%5 ab ‘;f] the standard matrix for projection and by A = E’%’

the standard matrix for reflection.

(a® - b?)
2ab

Argue both geometrically and algebraically that A? = A;A4; = A; and A2 = I (see Definition

14).

2ab
(b2 - a?)
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Solutions. For a line ¢ with equation y = mz, we choose (a,b) = (1,m) in (b) and (c) of Theorem
18. For £ equal to the y axis, we choose (a,b) = (0,1).
Also see Theorem 18 for rotation matrices. ~

In general, for a motion with standard matrix A;, followed by a motion with standard matrix

As, follow the motion, starting with a point P = [Z] :

- a () -waf]

thus the standard matrix for that sequence of motions is (A2A4;).
Because we multiply matrices on the left, but read normal words from left to right, we get a
counterintuitive result for sequences of motions.

(a) ) ) .
ila vl 1)=wEl )
(b) . ) )
=k 15l gy A
(c)
1% 10 o=
(d)
[(1) _01] [—01 _ol]z[(l) —01]
(e)
sle s A-%5% 3
(f) ) .
B R SR
(g) )
Y H A i
(h)
i e B
(i)

\)
B HER R

We could have used (a,b) = (2, —1) for this projection.
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(k)

(a)

0 0 3[ |0

0 of|77] |[0]°
(r) For both A; and Az, “algebraically” means matrix multiplication; check by multiplying that
A?=A; and A3 =1

The geometry of multiplying by A, is that you've dropped to the line £. Applying A; again does

not change anything, since you're already on the line; for any [:;] on the line, A, [x =|* , like
dropping to the earth when you're already on the earth.

The geometry of multiplying by As is that you reflect back to where you started, after applying
A, again; see the second drawing in Definitions 17.



14

Partial proofs 20, of Theorem 18. Begin with

Lemma 21. Let P, P,, and P; be points in the plane. The line segment from P3; to P» is
perpendicular to the line segment from P; to P, if and only if (P; — P,)T (P, — P,) = [O] ;

s

] g

Lemma 21 is a sort of opposite of Proposition 10, in the sense that being parallel is the opposite
of being perpendicular.
Partial Proof of Theorem 18(a), for # equal to 90 degrees. For arbitrary real z,y, we need
to show that _
-yl |0 -1} |z
2]-0 G

is the 90 degree counterclockwise rotation of [;] , as in Definitions 17(a).

Note first that both [;] and [;y are on the same circle centered at the origin, since their
distances to the origin are the same.

For the 90 degree angle as in Definitions 17(a), apply Lemma 21, with P, equal to the origin
P53 equal to [;] , Py equal to [_xy]

]

(see drawing below):

T
z —
(P3—P)T(P— P) = [y] [ xy] = [(~yz + zy)] = [0].
This shows that the line segment between the origin and [:] is perpendicular to the line segment

between the origin and [_a:y] , so that [_zy] is the counterclockwise or clockwise rotation of 90

degrees of [;] ; we are leaving unproved the fact that it is the counterclockwise rotation. O

- (2] b L]

B

e ¢lockwise go°

rotation
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Proof of Theorem 18(b). For arbitrary real x,y, we need to show that
1 a’? ab| [z
B=ore [ab b2] [y] h
is the projection of P3 = Z; onto 4.

To complete our identification with Lemma 21, let P; equal the origin.

Note first that
. a’z +aby|  az+by [a (%)
27T Q2102 labz+b%y| T @2 +02 |b|

a

Since P; is a real multiple of [b

] , P is on the line /.

It remains to show that the line segment from P; to P» is perpendicular to the line segment
from P, to P;. This will follow from Lemma 21, after using (*) in the following calculation.

(Pa—P2)T(P1—P2):(P2—P3)T(P2—Pl):(P2_P3)TP2=PéTP2_Pg-P2
+by)]? az + b eakiis S
- [ b af]- G e 0] - (e - ) -0

so that Lemma 21 implies that the line segment from P3 to P, is perpendicular to the line segment
from P» to the origin, as desired. O

9 Y;
| [

Pr

Proof of Theorem 18(c). By Proposition 10(b), for P, @, and R as in Definitions 17(b) and (c),
(Q-P)=R-Q);
this implies that
R=(2Q-P),

so that, by (b), since the identity matrix [(1) (1)] is the standard matrix for P — P, the standard

matrix for reflection P +— R is

2( 1 [ai’ ab])_[l 0]__1_[(2a2—(a2+b2)) 2ab J 1 [(a2—b2) 2ab

az+ b2 |ab b2 0 1|~ aZ2+102 2ab (22— (a®+b%)| ~aZ+b2| 2ab (B2 —a?)|"
Od
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Definition 22. If A is the standard matrix for a motion and Q (Greek letter, spelled “Omega,”
pronounced “Oh-may-guh”) is a subset of the plane, then the image of Q under the motion is

Q' =AQ) ={A [z] | [Z] is in Q}. .

Theorem 23. (a) The image of a line segment under a projection is either a single point or a line
segment.

(b) The image of a line segment under a rotation or reflection is a line segment.

Proof. Let A be the standard matix of a motion. By Proposition 10(a), a line segment  between
two (different) points P and R has the form {(1-¢)P+tR|0<t<1}.IfP = [zl] and R — [Zz] 7

1 2
it follows that

AQ)={1-t)A [;’] +tA [;2] 0<t<1}.
1 2
IfP=A [';1] #R'=A [ZQ] , A(R) is a line segment, while if P’ = R/, A(Q) is a single point.
1 2

To finish the proof of (b), it is sufficient to show that, in the preceding paragraph, P’ cannot
equal R’ if P does not equal R, when the motion is a rotation or reflection.

To this end, suppose P does not equal R.

If A is the standard matrix for a rotation of angle § degrees, with 0 < 6 < 360, let B be

the standard matrix for a rotation of angle (360 — ) degrees. Then P = BA Lz/:] = BP’ and

R=BA [22] = BR/, so that, since P does not equal R, P’ cannot equal R’.
2
If A is the standard matrix for a reflection, then A% equals the identity matrix, thus P =
A? [xl] = AP’ and R = A2 [;2] = AR/, so that, again, since P does not equal R, P’ cannot equal
2

Y1
R’. O

Theorem 23 implies that, to get the image of a polygon under one of the motions of Definitions
17, we need only get the images of the vertices of the polygon, then draw lines between those images
that correspond to the lines in the original polygon.

Examples 24. (a) Let Q be the triangle with vertices P; = [g] , Py = [(2)] and P3 = B] .

Find the image of © under reflections through and projections onto the axes, and under counter-
clockwise rotations of 90 degrees, 180 degrees, and 270 degrees.

(b) Let © be the quadrilateral with vertices Py = [3] , Py = [g] , P3 = [;] ,and Py = [g] .

Find the image of Q under the motion in Examples 19(a).

(c) Let Q be the rectangle with vertices Py = [_32] o Ps.= [g] s Pg = [g] and Py = [_02] :

Find the image of €2 under reflection through the z axis.
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Solutions. (a) For j = 1,2,3, let P; be the image of P;, under a given motion.

By Theorem 23, for each motion, we only need to calculate P}, P}, and P}, then draw the line
segments from P} to Pj, from Pj to P3, and from Pj to P}. In other words, €', the image of Q, is
the triangle with vertices P}, P}, and Pj.

In each picture, €2 is drawn in black and €', the image of (2, is drawn in red.

All rotations are counterclockwise.

0 1

eaf]- B i [ meaf] -]

Reflection through y axis. A = [ 0] implies that
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Reflection through z axis. A = l:(l) _01] implies that

teaf]-Rhm-aff- o[

With reflection through a line £, think of ¢ as being a mirror, with Q' being the mirror image of
Q, that is, what you see in the mirror.

Projection onto y axis. A= [g (1]] implies that

rieaf]- hm-aff-Bs-af] -}
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0
0

B fa

Projection onto z axis. A =

O =

J implies that

Notice that the projections above crushed a triangle into a line segment; this is in contrast to

reflections and rotations, where the image of a triangle is guaranteed to be a triangle (see Theorem
23).

90 degree rotation. A = [0 _1] implies that

1 0

P;:A[g] - [g],P;:A[é] = [3] *P%=AB] - [—32]'




'L J

180 degree rotation. A = [_1 0 ] implies that

0 -1

af]- Bl - [neafl- [

3 5

270 degree rotation. A = [_0 (1]] (90 degree rotation times 180 degree rotation) implies that

pi=al] = o =afo] = [S] rs=af3] < [3].
P

Notice, in the motions of Examples 24(a), that the points P;, P3, P3 (counterclockwise) are
changed to clockwise motion by reflection, but remain counterclockwise under rotation.
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Examples 24(b) and (c) follow the same strategy as (a), with images of vertices Pl,j=1,23,4.
Notice that the motions in both (b) and (c) are changing counterclockwise to clockwise, when one
follows the vertices in order. Notice also that the right angle at the vertex P; is moved to a right

angle at Pj. More generally, lengths and angles are preserved under rotation and reflection. See (3,
Chapters VIII and IX].

Because of this preservation, reflection and rotation are called rigid motions.

(b) Here A = # [,1{ _71] , so that the image of Q is the quadrilateral with vertices

R R R 1 RS |

In the two drawings below, 2 is drawn in black, €’ in red.
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1 0
0. =1

a2 - [t af] - [ e af] =[] ms= a2 -

Notice that € (drawn in black below) is the same set of points as ' = A(Q) (drawn in red
below). Yet there is movement of individual points; any point not on the z axis is getting moved,
specifically, reflected through the z axis. It is the totality of points that is unchanged under this
movement.

(c) Here A = [ ] , so ' is the rectangle with vertices

This is called symmetry (see Definition 25).

——
—
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Definition 25. Suppose a motion has standard matrix A and €2 is a subset of the plane. We say
that € is symmetric with respect to the motion if A(Q) = Q.

g

Examples 26. (a) Which of the figures below (i, ii, iii, iv, v, and/or vi) are symmetric with respect
to 90 degree counterclockwise rotation?

(b) Which of the figures below (i, ii, iii, iv, v, and/or vi) are symmetric with respect to 180 degree
counterclockwise rotation?

(c) Which of the figures below (i, ii, iii, iv, v, and/or vi) are symmetric with respect to reflection
through the z axis?

(d) Which of the figures below (i, ii, iii, iv, v, and/or vi) are symmetric with respect to reflection
through the y axis?

7/ 7/
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Solutions. These can be done visually; that is, visualize applying the specified rotations and
reflections to the figure, and see if we end up with the same figure, that is, the same subset of the
plane covered by the figure. ~

Figure (i) has none of the desired symmetries: rotating 90 degrees moves the triangle from the first
quadrant to the second quadrant, as in (vi); rotating 180 degrees moves the triangle into the third
quadrant, as in (v); reflection through the y axis moves Figure (i) into the second quadrant, as in
(ii); reflection through the z axis moves Figure (i) into the fourth quadrant, as in (iii).

Figure (ii) is symmetric with respect to reflection through the y axis. Figure (iii) is symmetric with
respect to reflection through the z axis. Figure (iv) is symmetric with respect to both reflections
and (this follows automatically) 180 degree counterclockwise rotation. Figure (v) is symmetric with
respect to 180 degree counterclockwise rotation (this is the same as reflecting through the origin).
Figure (vi) is symmetric with respect to 90 degree counterclockwise rotation, hence also with respect
to 180 degree counterclockwise rotation.

Now let’s put that information into literal answers to (a)—(d):
(a) (vi).
(b) (iv), (v), and (vi).
(c) (iii) and (iv).
(d) (i) and (iv).

These can also be done algebraically, using the standard matrices for the desired rotations and
reflections. Estimate the coordinates of vertices and check (using the standard matrix for a motion)
that the motion takes each vertex to another vertex in the figure.

For example, in (ii), relevant vertices look like

e {m [ e[ o )

-1 0
0 1

AP] = Pz,APg = Pl,AP3 — P4,AP4 = P3, and APs = P5,

implying symmetry for Figure (ii) with respect to reflection through the y axis.

For reflection through the y axis, the standard matrix is 4 = [ ] ; check that

For reflection through the z axis, the standard matrix is A = [1 ; ] ; since APy = [_21] ,

0 -1
which is not in the figure, Figure (ii) does not have symmetry with respect to reflection through the
T axis.

The same failure occurs with rotation symmetries for Figure (ii).
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HOMEWORK

1. Suppose P = [_12] and R = [_43] :

(a) Find the midpoint of the line segment from P to R.

(b) Which of the following points are on the line segment from P to R?
0f LJ5] 175
0" 210|" 2 |—-4|"

2. Find each of the following sums and/or products. On each part, your answer should be a single
matrix.

o ]

1 4
@ 5] -]
3. Which of the following pairs of line segments are perpendicular?

(a) line segment from [_21] to [;J and line segment from B] to [ﬂ .

(b) line segment from [(?;] to [(1)] and line segment from [é] to [ﬂ .

4. (a) Find the standard matrix for the following motion: rotate 45 degrees, then project onto
1 —=12%;

(b) Find the standard matrix for the following motion: project onto y = 2z, then rotate 45 degrees.

(c) Find the standard matrix for the following motion: reflect through y = z, then rotate 90 degrees,
then reflect through y = —z.

(d) Find the standard matrix for the following motion: project onto y = —z, then rotate 180 degrees,
then reflect through y = 3z.

(e) For an arbitrary line through the origin ¢, find the standard matrix for the following motion:
project onto ¢, then rotate 90 degrees, then project onto /.

(f) Find the standard matrix for the following motion: rotate 90 degrees, then project onto y = z,
then reflect through y = z.

(g) Find the standard matrix for the following motion: reflect through y = z, then rotate 90 degrees.

(h) Find the standard matrix for the following motion: reflect through y = z, then rotate 90 degrees,
then project onto the y axis.
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(i) Find the standard matrix for the following motion: project onto y = 2z, then rotate 90 degrees,
. _ 1
then project onto y = —5T.
~N

1
(j) Find the image of the point [ \%] under the motion in (e).

(k) Find the image of the point [8] under the motion in (b).
-3

(¢) Find the image of the point [ 5

] under the motion in (g).

(m) Find the image of the point

iy
[y

0] under the motion in (f).

(n) Find the image of the point [1

2] under the motion in (c).

5. (a) Let Q be the triangle with vertices P; = [8] , Po = [_53] and P3 = [?)] ;

Find the image of 2 under the motion in number 4(g).

(b) Let Q be the quadrilateral with vertices P; = [g} o B = [;J , P3.= [ﬂ ,and Py = [_31} .

Find the image of € under the motion in number 4(c).

6. A fixed point of a motion with standard matrix A is a point [z] such that A [:ﬂ = [ﬂ . In
general, a motion moves points; a fixed point is one that doesn’t get moved.

(a) What are the fixed points of a rotation?
(b) What are the fixed points of a projection onto a line ¢ through the origin?

(c) What are the fixed points of a reflection through a line ¢ through the origin?

7. For any 2 x 2 matrix B, define powers of B exactly as you do with numbers:
B'=B, B*=BB, B*=B(B?) = BBB, ...B""' = B(B"), n=1,2,3,...

(a) Let A; and Az be as in Examples 19(r). For arbitrary n = 1,2, 3,..., characterize A} in terms
of Ay and A% in terms of A and I (see Definition 14).

2 (1
A3, A§, and A3. For what n does A} = I? For what n does A} = A3?

b) Let A3 = L ol , the standard matrix for counterclockwise rotation of 45 degrees. Find
V2 1




¢ %

8. (a) Which of the figures below (i, ii, iii, iv, v, vi, vii, and/or viii) are symmetric with respect to
90 degree counterclockwise rotation?

N
(b) Which of the figures below (i, ii, iii, iv, v, vi, vii, and/or viii) are symmetric with respect to 180
degree counterclockwise rotation?

(c) Which of the figures below (i, ii, iii, iv, v, vi, vii, and/or viii) are symmetric with respect to
reflection through the z axis?

(d) Which of the figures below (i, ii, iii, iv, v, vi, vii, and/or viii) are symmetric with respect to
reflection through the y axis?

(L\ ///’l (i(” /)Y

|7 7 P
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HOMEWORK HINTS

. Proposition 10 and Examples 11.

. Definitions 5, Examples 6, Definition 12, and Examples 13.
. Lemma 21.

. Theorem 18 and Examples 19.

. Theorem 23 and Examples 24.

. Geometry.

Geometry; see especially Examples 19(r). For powers of As, look separately at even powers and

odd powers. See Theorem 18 for rotation matrices. Also possibly useful is the fact that

IB =B = BI,

for any 2 x 2 matrix B (see Definition 14).

8.

Definition 25 and Examples 26.



HOMEWORK ANSWERS

of g

@ :—_121J -

3. (a) only.
4 (2) 2 [Z ;]
SR
@ o
@& i

(e) [8 8] (this can be deduced geometrically or algebraically).

CH bk

() [_01 ?]



. . < o] 3] [-3
5. (a) triangle with vertices [O] 3 [5] . [ 0 ] .

(b) quadrilateral with vertices [8] ; [—2] 4 [_1] 3 [1] .

6. (a) [8] is the only fixed point of a rotation, unless it’s a rotation of an integral multiple of 360
degrees; then every point is a fixed point.

(b) and (c) £.

7. (a) Forn=1,2,3,..., A} = A;, A} =1 if niseven, A} = A, if n is odd.

(b) A3 = —1I, rotation of 180 degrees (note that 4 x 45 = 180). A§ = I, A = As; more generally,
AP =T & n=8k k=1,23,..;A0 = A3 <= n=(8k+1), k=0,1,2,3,....

8. (a) (iii), (vii).

(b) (i), (iii), (vi), (vii).
() (v), (vi), (vii), (viii).
(d) (iv), (vi), (vii).
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