
© 2019, Teacher‐Scholar Institute, www.teacherscholarinstitute.com  
 

 
 
 
 
 
 
 
 
 
 

TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI  
 
 
 
 
 

 
Vectors Point to 

Geometry and Trigonometry 
 

 
Dr. Ralph deLaubenfels 

 
 
 
 
 

TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI  
 
 
 
 
 
 
 
 
 
 

 
 
Teacher-Scholar Institute 
 
Columbus, Ohio 
 
2019 



TABLE OF CONTENTS 
 

Introduction ....................................................................................................................................1 

0.       Some Preliminaries ......................................................................................................6 

I. Vectors and Complex Numbers: Two New Ways to View the Plane ....................10 

II. Objects and Parameters of Interest ..........................................................................23 

III. Some Parallel Geometry ............................................................................................67 

IV. Dot Product and Orthogonality ................................................................................99 

V. Some Perpendicular Geometry ...............................................................................116 

VI. Exponential, Cosine and Sine; Angle Revisited ....................................................148 

VII. Trig and Triangles, Law of Cosines, Law of Sines................................................167 

VIII.  Congruence and Similarity………………………………………………………215 

IX. Proof of Theorem 8.3, via Matrices………………………………………………224 

X. Congruence and Similarity of Triangles…………………………………………238 

       XI.       More Quadrilateral  Results……………………………………………………...275 

       XII.     Area and Volume………………………………………………………………….298   

       XIII.   Construction with Straight Edge and Compass…………………………………320 

       XIV.   More Geometry and Trigonometry Problems…………………………………...367 

Appendix Zero. The Language of Sets, Logic, and Functions……………………………...423 

Appendix One.  Integration, Area, and Volume…………………………………………….431 

Appendix Two.  Complex Integration and Arclength ............................................................439 

Appendix Three.  Complex Exponentials, Arclength, and Angles ........................................442 

Appendix Four.  Another Approach to Angle, Cosine, and Sine ..........................................449 

Index ............................................................................................................................................458 

 

 

 
 



INTRODUCTION. High-school geometry, which will be abbreviated to “geometry” throughout
this book, defined to be a year-long class between a first and second year of high-school algebra, has
become sidelined and isolated. Very little math that precedes geometry is used in the teaching of
geometry and very little that is learned in geometry is used in subsequent math classes. Sometimes
it is seen as an opportunity to introduce students to rigor in mathematics; this self-consciously in-
tellectual loftiness is usually in a stilted, mechanical style that will never be seen again, especially
in mathematical circles. It gives students a false, derogatory impression of mathematics, as a set of
arbitrary rules of etiquette unrelated to both the physical world and the world of ideas, unnecessarily
making it seem mysterious and esoteric. At the other extreme, an “applied” or “conceptual” (ad-
jectives that usually translate as “mediocre” or “false”) approach relies on dubious visual intuition
to produce large, random collections of unjustified memorized rules. This is at best risky, producing
a false, insecure knowledge that is much worse than a frank admission of ignorance. Many geome-
try books embrace the worst of the two extremes just described, vacillating uncertainly but glibly
between them, by making up their own extensive, unnatural, unpredictable, and byzantine set of
axioms that students are motivated to memorize only by the force of arbitrary authority. With this
style of geometry book, postulates are sprung unexpectedly throughout the book like bad science
fiction bolstering a shaky plot.

The segregation of algebra and geometry limits both disciplines and is completely counter to the
nature and evolution of math. The artificial break in algebra for a year, created by the unmotivated
insertion of geometry between “Algebra One” and “Algebra Two,” is very damaging to learning
algebra; it is always better pedagogy to continually reinforce and build on past material. Geometry
is virtually destroyed, as an applicable subject that can be recalled at will, by the dead end it is
steered into.

Nostalgia for the classical Greeks is probably the motive for this increasingly diversionary year
in the standard sequence of math classes. This nostalgia, or at least respect, is appropriate. The
intellectual output of the classical Greeks was extraordinary. Euclid’s “Elements” was virtually
unchallenged for two thousand years, used as the textbook for geometry up to the nineteenth century.

Part of what is impressive about the mathematical creations of the classical Greeks is the lack of
simplifying ideas, most immediately algebra and terminology, that we now have access to. A better
sense of motion, including change and displacement, beginning as early as the fourteenth century,
leads to both vectors and calculus. The Cartesian plane, especially with the additional structure of
vectors and complex numbers, provides a setting where geometry can be explicitly visualized and
calculated.

Except for the purposes of historical re-enactment, it does not make sense to ignore those tools
in our present learning and applications of geometry. The symbiotic relationships between different
areas of math need to be communicated as early as possible. Arguably the dominant theme of modern
mathematics and its applications is the interaction between algebra (precision via calculations) and
geometry (intuition via pictures); intertwining these gives the best of both worlds.

Another increasingly fashionable trend in high-school mathematics education is the removal of
vectors and complex numbers. College students commonly do not see vectors until multi-variable
calculus, and we are not cognizant of any guaranteed appearance of complex numbers; we have seen
prestigious graduate-level statistics texts that severely limit the scope of their proofs (for example,
of the central-limit theorem) by avoiding complex numbers. We will show in this book how these
subjects make geometry and trigonometry much simpler and more intuitive and put geometry back
in the mainstream of what should be a continuous, single gestalt of mathematics.

Yet another fashionable peculiarity in high-school math pedagogy is the entirely different style
of presentation of geometry compared to trigonometry, which is, at least initially, virtually the same
subject. While geometry, as traditionally presented, strives for some sort of mathematical rigor,
trigonometry often degenerates into pages of random, byzantine formulas, neither motivated nor
justified.

In this book, we have placed geometry in the mainstream of math by beginning with vectors and
complex numbers, which are simple algebraic concepts easily accessible to any student competent
in the traditional first year of high-school algebra. These subjects enable proofs in geometry to
be a mixture of algebra, logic, and pictures, as with mathematical proofs at any level. Algebraic



2

techniques take away much of the mystery of proofs, giving one something to do to get started
either proving or deriving a result. This also places vectors and complex numbers at a more natural
point in a student’s intellectual development; in particular, there is no good reason to delay their
introduction until after single-variable calculus.

Vectors lead, at least psychologically, to calculus, in the sense that they involve a sense of motion;
this is another way in which our approach puts geometry back in the pedagogical mainstream.
In addition to geometry, our book also puts vectors and complex numbers into a more natural
intellectual setting in math pedagogy.

Our goal is not to belittle traditional geometry arguments, except in their exclusiveness. Our
approach is meant to supplement and rearrange, not replace, the traditional Euclidean approach,
with our much more complete arsenal greatly simplifying and clarifying deep and important subjects.
The algebraic techniques with which we are preceding geometry and trigonometry take away much
of the mystery of proofs, always providing a way to start a problem.

We agree with traditional pedagogy in believing that geometry is a good place to introduce
mathematical proofs, because of the constant availability of pictures to guide the mind and exposi-
tion. What we are adding to this proof-writing introduction is the additional guidance of algebraic
techniques, all put together into, not only the (mostly verbal) style of a mathematics proof, but
the style of any persuasive reasoning: science from first principles, legal arguments, philosophy, reli-
gion, personal disagreements, all mental activities that high school students should see in traditional
“English” or “Social Studies” classes. In other words, geometry should be in the mainstream, not
only of mathematics, but of all analytic thought and its verbal representation. A relevant historical
note: it is said that at the entrance to Plato’s Academy was the written message “let no one ignorant
of geometry enter here.”

We have already mentioned the symbiotic relationships between different areas of math. On a
more general level, there is, or should be, a symbiotic relationship between mathematical theory,
applications of math, and teaching math. Even if a student’s primary goal is remembering the
conclusions of geometry, learning the proofs makes it much easier to remember, or derive if one
forgets, those results. Someone who plans to teach geometry will do a much better job the deeper
said person’s understanding is.

Our approach paves the way for much deeper math and applications; the dot product, for
example, leads to extensive twentieth-century research in math, physics, and statistics. We have
chosen postulates that, besides being simple and believable, are an entree into calculus, further
putting geometry into the mainstream of mathematics and its presentation.

See Appendix 0 for the definition of the word “postulate” and other logical terminology needed.

POSTULATES:

(1) The plane of this book may be represented as the Cartesian plane R2 ≡ {(x, y) |x, y are real numbers}.

(2) Given real numbers a < b, c < d, the area of the upright rectangle

[a, b]× [c, d] ≡ {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d} (b > a, d > c)

is defined to be (b− a)(d− c) and the length of the line segment from (a, c) to (b, d) is defined to be√
(b− a)2 + (d− c)2.

An example of a surface that does not satisfy these postulates is the surface of the earth, an
example of a non-Euclidean space. Many things are buried in our postulates, including Euclid’s fifth
postulate, the parallel postulate (Proposition 3.2).
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See DRAWING INTRO at the end of the Introduction, for an outline of topics covered in this
book.

Prerequisites for this book are the usual topics of a first year of high-school algebra, including
the Cartesian plane. The content of said prerequisites is summarized in Chapter 0. This leads
naturally to complex numbers and (two-dimensional) vectors, in Chapter I. Chapter II defines the
relevant parameters of geometry (length, angle, and area) in a way that sets them up to be dealt
with using vectors and complex numbers. The very simple idea of parallel vectors leads already, in
Chapter III, to short, easy proofs of many interesting geometry results. The so-called dot product of
two vectors, motivated by the Pythagorean theorem, produces an algebraic (and easily calculated)
definition of two vectors’ being orthogonal or perpendicular, in Chapter IV. This leads, in Chapter V,
to more geometric results; in contrast to Chapter III, the Chapter V geometry involves orthogonality
(being perpendicular) rather than being parallel. In Chapter VI, both vectors and complex numbers
are used to introduce the trigonometric functions sine and cosine, and use them to calculate angles.
Trigonometry is related to triangles in Chapter VII, and then used to give short, simple proofs of
many fundamental results in geometry. Chapter VIII gives explicit statements of the invariance of
length, angle, and area under what are called rigid motions: translation, rotation, and reflection.
Angle is also shown to be invariant under magnification. Chapter IX introduces matrices, to prove
the results of Chapter VIII. Chapter X uses our trigonometry results to give short, simple proofs
of the popular congruence (meaning equal after some rigid motions) results for triangles. Chapter
XI has additional parallelogram geometry, Chapter XII derives some area formulas, while Chapter
XIII is about constructions with straight edge and compass. Chapter XIV is worked examples,
preceded by a distilled short list of theoretical geometry results needed. Appendix 0 gives precise
statements of functions and logic. Appendices I–IV are meant only for students who have had
single-variable calculus; for those without a calculus background, the appendices may be taken as
additional postulates. Appendix IV is independent of the rest of the book, giving a presentation of
trigonometric and inverse trigonometric functions analogous to the presentation of exponentials and
logarithms in calculus.

This book may be used in many different ways, in particular, with different degrees of rigor.

A future teacher of geometry should go through the entire book, including appendices, after
single-variable calculus. A student who has not had calculus should not work through Appendices
I–IV, but use their conclusions, if needed, as additional assumptions (see “Postulates” above), to be
believed without proof. Chapter IX may be skipped if one is willing to take, on faith without proof,
the quite plausible assertions of Chapter VIII described in the previous paragraph; in fact, in the
same spirit, all but the first two and last two paragraphs of Chapter VIII may be skipped, under
these articles of faith. It should be mentioned that Chapter IX also completes the introduction
to the subject of linear algebra begun in Chapter II: Chapter II has vectors while Chapter IX has
matrices. Finally, if the reader is interested only in the results, without the proofs, of geometry, said
reader could read the book, especially Chapter XIV, without the proofs. The author recommends at
least some informal perusal of proofs, if only to make remembering conclusions more than a random
event.

Other pedagogical possibilities are to begin with Chapter XIII (constructions), providing moti-
vation to then cover the book to see why the constructions work; or, one could begin with Chapter
XIV (solving problems), providing motivation to cover the book to understand the tools just used.

Students who haven’t had calculus should be encouraged to browse through the appendices, to
get some of the flavor of calculus.
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Other books have applied vectors to geometry, usually in a college upper-division “vector analy-
sis” class. Other books have included the Cartesian plane in teaching geometry; we note in particular
the excellent book by Serge Lang and Gene Murrow, “Geometry,” second edition, 1988, where coor-
dinates are introduced in Chapter 2 and vectors and dot product in Chapter 10, but the bulk of the
book is Euclid’s approach; see the last paragraph at the bottom of the first page of the introduction
in said book.

See also the books by John Saxon, especially “Algebra 1. An Incremental Development,” second
edition, 1990 for a more applied approach to geometry and the best coverage we have seen of high-
school algebra.

Our book is new in its entire reordering of the teaching of vectors, complex numbers, trigonom-
etry, and geometry, including basic geometry definitions in terms of vectors, complex numbers, and
trigonometry. The systematic application of complex numbers to geometry is, so far as we know,
new with this book. The majority of proofs are original.

As with traditional geometry books, this book will introduce students to mathematical proofs,
with this difference. Whereas traditional geometry books introduce students to mathematical proofs
of classical Greece, our book introduces students to both classical and modern mathematical proofs,
with techniques that are both easier and more powerful.
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CHAPTER 0: Some Preliminaries.

We will need a few topics from traditional first-year high-school algebra.

Denote by R the set of all real numbers.

Definitions 0.1. The Cartesian plane, denoted R2 (reads “R two”), is the set of all ordered
pairs of real numbers {(a, b) | a, b are real numbers }. The ordered pair (a, b) represents the point a
units to the right of the origin, b units above. See DRAWING 0.1 at the end of this chapter.

The number a is the x coordinate of (a, b), b is the y coordinate. The x-axis is the horizontal
axis (line) {(x, 0) |x is real }, the y-axis is the vertical axis (line) {(0, y) | y is real }.

The upper half plane is {(x, y) | y > 0}, the right half plane is {(x, y) |x > 0}; we leave it
to the reader to write definitions for lower half plane and left half plane.

Definition 0.2. The distance between (x1, y1) and (x2, y2) is

d ((x1, y1), (x2, y2)) ≡
√

(x2 − x1)2 + (y2 − y1)2.

See DRAWING 0.3 at the end of this chapter.

Definition 0.3. If a, b, and c are real numbers then

{(x, y) | ax+ by = c}
is a line in R2. The formula ax+ by = c is an equation of the line. See DRAWING 0.2 at the end
of this chapter.

Definitions 0.4. The slope of a nonvertical line is

m ≡ (y2 − y1)
(x2 − x1)

,

for any pair of different points (x1, y1), (x2, y2) on the line. We will define the slope of a vertical
line x = c to be m = ∞.

Note that we could just as naturally think of the slope of a vertical line as −∞, in the following
way. The vertical line x = c could be thought of as a limit, as n gets arbitrarily large, of the lines
of slope n: y

n = (x− c); or as the limit of the lines of slope −n: y
−n = (x− c). See DRAWING 0.3

at the end of this chapter.

Assertion and Definition 0.5. If a line has finite slope m and crosses the y-axis at the point
(0, b), then an equation of the line is

y = mx+ b.

b is called the y intercept of the line.

Lines of infinite slope always have the form x = c, for some fixed real number c.

Definitions 0.6. Completing the square means writing the quadratic expression

y = ax2 + bx+ c (a, b, c are numbers)

in the form
y = a(x+ β)2 + γ.
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Thinking backwards from the expansion

(x+ β)2 = x2 + 2βx+ β2

leads to

y − c

a
=
(
x2 +

b

a
x

)
=

(
x2 +

b

a
x+

(
b

2a

)2

−
(
b

2a

)2
)

=
(
x+

b

2a

)2

−
(
b

2a

)2

so that

y = a

(
x+

b

2a

)2

+ c− a

(
b

2a

)2

= a

(
x+

b

2a

)2

+
[
4ac− b2

4a

]
(completed square).

Setting y = 0 produces the quadratic formula giving the following solutions to the quadratic
equation ax2 + bx+ c = 0:

x =
1
2a

(
−b±

√
b2 − 4ac

)
(a 6= 0).

Examples 0.7. (a) Find the slope of the line whose equation is 6x+ 2y = 5.

(b) Find the slope of the line thru (0, 5) and (3, 2).

(c) Find the equation of the line thru (0, 5) and (3, 2).

(d) Complete the square: y = −2x2 + 6x− 3.

(e) Use completing the square to solve x2 = 10− 4x.

(f) Use the quadratic formula to find where y = 3x− 2 intersects y = x2 + x− 8.

Solutions. (a) y = −3x+ 5
2 → slope is −3.

(b) 2−5
3−0 = −1.

(c) y−5
x−0 = −1 → y = 5− x.

(d) −y
2 = x2 − 3x+ 3

2 → (−y2 − 3
2 ) = x2 − 3x+ (3

2 )2 − ( 3
2 )2 = (x− 3

2 )2 − 9
4 →

−y
2 = (x− 3

2 )2 − 3
4 →

y = −2(x− 3
2 )2 + 3

2 .

(e) x2 +4x = 10 → x2 +4x+( 4
2 )2 = 10+( 4

2 )2 → (x+2)2 = 14 → (x+2) = ±
√

14 → x = −2±
√

14.

(f) 3x− 2 = x2 + x− 8 → x2 − 2x− 6 = 0 →

x =
1
2
(2±

√
(−2)2 − 4(1)(−6)) =

1
2
(2±

√
28) = 1±

√
7.
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CHAPTER I: Vectors and Complex Numbers: Two New Ways to View the Plane.

Our goal in this chapter is to describe points in the Cartesian plane R2 both as vectors (Definition
1.2) and as complex numbers (Definitions 1.8).

Vectors will provide a sense of motion or displacement; complex numbers put an algebraic
structure (addition, subtraction, multiplication, and division) onto R2.

The definition of a vector requires a pair of points, connected by an arrow.

Definitions 1.1. If I and T are points, denote by
−→
IT the arrow or directed line segment that

begins at I and ends at T. I is the initial point, T the terminal point;
−→
IT is traditionally drawn

with the arrow tip or arrowhead at T and a fat dot, in lieu of feathers, at I. See DRAWING 1.1 at
the end of this chapter.

If I = (x1, y1) and T = (x2, y2), then the components of
−→
IT are (x2−x1) (the x component)

and (y2− y1) (the y component). See DRAWING 0.3 at the end of Chapter 0 and DRAWING 1.1
at the end of this chapter.

As a set of points in R2,
−→
IT = {(x1 + t(x2 − x1), y1 + t(y2 − y1) | 0 ≤ t ≤ 1}. (∗)

But there is more to a directed line segment than a set of points; there is a sense of motion; you
imagine yourself traveling from the initial point to the terminal point. In (*), we think of the variable
t as being time: at t = 0, we are at the initial point I ≡ (x1, y1), at t = 1, we are at the terminal
point T ≡ (x2, y2), and in general, as t increases, we are moving away from I and towards T. See
DRAWING 1.2 at the end of this chapter.

Definition 1.2. A vector (in two dimensions) is an object represented by a directed line segment,
with the understanding that two directed line segments represent the same vector if they have the
same x components and the same y components. Intuitively, two directed line segments with the
same length and direction represent the same vector.

We will denote
−→v =< v1, v2 >

to mean the vector represented by any directed line segment with x component v1 and y component
v2. See DRAWING 1.3 at the end of this chapter.

Vectors should be considered displacement (note that components are displacements: the x
component is the displacement, that is, the change, in the x coordinate, the y component the
displacement in the y coordinate). What matters is not where you began or ended, but what change
occurred from your motion in passing from the initial point to the terminal point.

In any physical model, the first distinction that must be made is whether a parameter is a
number or a vector. For example, a wind speed of 20 mph (twenty miles per hour) is not complete
information; a wind velocity, say, of 20 mph North by Northeast, tells me I’ll work harder when I
travel South by Southwest, against the wind, than when I travel North by Northeast, with the wind.
Speed is a number, giving only magnitude, while velocity is a vector, with the additional information
of direction (see Definitions 2.4).

Force is a vector, pushing you in a certain direction (e.g., towards the ground if you’re in the
air); work is a number.



11

Definitions 1.3. Denote the origin (0, 0) by O. Given a vector −→v =< v1, v2 >, let T be the point
(v1, v2). The standard position of −→v is the directed line segment

−→
OT. Conversely, given a point

T, its position vector is the vector represented by the directed line segment
−→
OT ; if T = (v1, v2),

then its position vector is < v1, v2 > . See DRAWING 1.4 at the end of this chapter.

There will be times when we want you to leap nimbly between point and vector, via the corre-
spondences just described; see 1.16.

Definitions 1.4. We would like to have algebra with vectors; in this chapter, we will define only
addition of vectors and multiplication of vectors by real numbers. See Chapter IV for a sort of
multiplication of vectors.

It is always desirable to correlate algebra and geometry; algebra (calculations) gives precision,
while geometry (pictures) provides intuition.

If −→v ≡< v1, v2 > and −→w ≡< w1, w2 >, then

(−→v +−→w ) ≡< v1 + w1, v2 + w2 > .

That’s an algebraic definition of vector addition; see DRAWING 1.5 at the end of this chapter for
the geometric picture.

DRAWING 1.5 makes sense when you think of a vector as traveling or displacement; (−→v +−→w )
is the net displacement, after being displaced by −→v , then by −→w . Think of the two vectors as a pair
of professional wrestlers, each contributing a different force.

The zero, or trivial, vector is
−→
0 ≡< 0, 0 > . Note that

−→
0 +−→a = −→a , for any vector −→a . Vectors

in general represent displacement; the trivial vector means no displacement, no change or motion.

If −→v ≡< v1, v2 > and c is a real number, then the vector c−→v is defined by

c−→v ≡< cv1, cv2 > .

In DRAWING 1.6 at the end of this chapter we drew pictures of 2−→v and (−−→v ). Note that (−−→v ) +
−→v =

−→
0 ; displacement by the vector (−−→v ) cancels out the displacement of −→v , leaving the would-be

traveler at the beginning of the attempted net motion.

The pictures in DRAWING 1.6, of multiplication of a vector by a real number, suggest the
following definitions.

Definitions 1.5. Two vectors −→v and −→w are parallel if one is a real multiple of the other: −→v = c−→w
or −→w = c−→v , for some real number c. If c > 0, −→v and −→w point in the same direction; if c < 0,
then −→v and −→w point in opposite directions.

In DRAWING 1.6, 2−→v points in the same direction as −→v , while (−−→v ) points in the opposite
direction.

Finally, we have the peculiar algebra of adding a point to a vector, to produce another point.

Definition 1.6.
I +

−→
IT = T ; OR (a, b)+ < v1, v2 >= (a+ v1, b+ v2).

See DRAWING 1.7 at the end of this chapter.

Intuitively, we start at the point I, then the vector
−→
IT moves us to the point T.

Examples 1.7. (2, 0) + 3 < 1, 2 >= (2, 0)+ < 3, 6 >= (5, 6).
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< 2, 0 > +3 < 1, 2 >=< 2, 0 > + < 3, 6 >=< 5, 6 > .

See DRAWING 1.8 at the end of this chapter.

Definitions 1.8. For any real number t, t2 ≥ 0. Thus there is no real solution of the equation
t2 + 1 = 0; that is, no real square root of (−1).

When something does not exist, it is good strategy to give it a name. This creates the comfortable
illusion, not only of existence, but of understanding.

By definition, “i” (short for “imaginary”) is a number whose square is (−1):

i2 = (−1) or i ≡
√

(−1).

Imaginary numbers are real multiples of i; complex numbers are sums of real numbers and
imaginary numbers (x+ iy), where x and y are real numbers:

C ≡ {complex numbers} ≡ {(x+ iy) |x, y are real}.
The real part of z ≡ (x+ iy), denoted Re(z), is x; the imaginary part, denoted Im(z), is y.

We may add complex numbers and multiply complex numbers by real numbers:

(a+ ib) + (c+ id) = (a+ c) + i(b+ d); c(a+ ib) = ca+ i(cb). (a, b, c, d real).

These operations are not really new (see Definitions 1.4), when we think of a complex number
as a point or vector (in standard position) in the plane:

(a+ ib) ∼ (a, b) or < a, b >,

where “∼” refers to not-necessarily-rigorous equating. See DRAWING 1.9 at the end of this chapter.

In this setting, the x-axis is called the real axis R, the y-axis is called the imaginary axis iR,
and C is called the complex plane.

What is new is that we may multiply two complex numbers together or divide one complex
number by another:

(a+ ib)(c+ id) = (ac+ iad) + (icb+ dbi2) = (ac− db) + i(ad+ cb) (a, b, c, d real);

(a+ ib)
(c+ id)

=
(a+ ib)(c− id)
(c+ id)(c− id)

=
(ac+ bd) + i(bc− ad)

(c2 + d2)
=
(

(ac+ bd)
(c2 + d2)

)
+i
(

(bc− ad)
(c2 + d2)

)
(a, b, c, d real, c2 + d2 6= 0).

Definitions 1.9. Suppose a and b are real and z ≡ (a+ ib). The conjugate of z is

z ≡ (a− ib).

The absolute value of z is
|z| ≡

√
a2 + b2.

Note that |z| is the length of the directed line segment representing the vector < a, b > and
conjugation is reflection through the x axis. See DRAWING 1.10 at the end of this chapter.

Conjugation Lemma 1.10. Suppose z and w are complex numbers.

(1) |z|2 = zz.

(2) (z + w) = z + w.

(3) (zw) = (z)(w).

(4) (z + z) = 2 Re(z).

(5) (z − z) = 2i Im(z).
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Proof: Write z = x+ iy, w = u+ iv, with x, y, u, v real.

(1) zz = (x+ iy)(x− iy) = x2 − (iy)2 = x2 + y2 = |z|2.

(2) (z + w) = (x+ u) + i(y + v) = (x+ u)− i(y + v) = (x− iy) + (u− iv) = z + w.

(3) (zw) = (xu− yv) + i(xv + yu) = (xu− yv)− i(xv + yu) = (x− iy)(u− iv) = (z)(w).

(4) (z + z) = (x+ iy) + (x− iy) = 2x = 2 Re(z).

(5) (z − z) = (x+ iy)− (x− iy) = 2yi = 2i Im(z). �

Examples 1.11. (2− i) + 3(1 + 2i) = (2− i) + (3 + 6i) = (5 + 5i).

(2− i)(1 + 2i) = 2(1 + 2i)− i(1 + 2i) = (2 + 4i)− (i+ 2(−1)) = (4 + 3i).

|(2− i)| =
√

4 + 1 =
√

5, |(1 + 2i)| =
√

1 + 4 =
√

5, |(4 + 3i)| =
√

16 + 9 = 5 = |(2− i)||(1 + 2i)|.

(2− i) = (2 + i); NOTE that (2− i)(2− i) = 5 = |(2− i)|2.
1

(2−i) = (2+i)
(2−i)(2+i) = (2+i)

5 = 2
5 + 1

5 i.

We will now present a representation of complex numbers (Definition 1.15) very useful in un-
derstanding angles (Definitions 2.10). This will involve a function (“exp,” see Theorem 1.12; see
Definitions APP0.3 for the precise definition of “function”) fundamental to many applications of
calculus, whose restriction to the unit circle x2 + y2 = 1 defines trigonometry (Definition 6.1).

Theorem 1.12. There exists a function exp : C → C such that, for any complex z, w,

(1)
exp(z + w) = exp(z) exp(w)

and
(2)

exp(z) = exp(z).

Proof: Appendix Three, Theorem APP3.2. �

Motivated by Property (1) of Theorem 1.12, the function exp(z) is traditionally written ez,
where e ≡ exp(1). Because of its derivative properties (see Appendix Three, Theorem APP3.2(3))
exp is called the (as opposed to “an”) exponential function.

Corollary 1.13. For any complex z, | exp(z)| = exp(Re(z)).

Proof:

| exp(z)|2 = exp(z)exp(z) = exp(z) exp(z) = exp(z + z) = exp(2Re(z)) = (exp(Re(z)))2 .

We will be done if we can show that exp(Re(z)) is real and nonnegative. Let x ≡ (Re(z)). Since
x is real, Property (2) of Theorem 1.12 implies that exp(x2 ) is real. Writing, by Property (1) of
Theorem 1.12,

exp(x) =
(
exp(

x

2
)
)2

implies that exp(x) is nonnegative. �

Corollary 1.14. For any R ≥ 0, real θ,Reiθ is a point on the circle x2 + y2 = R2.

Proof: Since Re(iθ) = 0, Corollary 1.13 implies that

|Reiθ| = R|eiθ| = R.

�
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See DRAWING 1.11 at the end of this chapter.

Definition 1.15. Writing a complex number z as reiθ, r ≡ |z|, θ real, is called the polar form for
z.

Lemma 2.8 shows that every complex number has a polar form. Also see Lemma 2.8 and
DRAWING 2.11 at the end of Chapter II for a picture of what θ means. The parameter θ will, in
addition, give us the measure of angles between vectors (see Definitions 2.10).

Glib Equivalences 1.16. For x, y real numbers, we have already mentioned that we will want
to associate the point (x, y) in R2, as in Definitions 0.1, with the vector < x, y > in standard
position (see Definitions 1.3 and DRAWING 1.4 at the end of this chapter). We will also find it
very convenient to, in addition, associate (x, y) with the complex number (x+ iy); see DRAWING
1.9 at the end of this chapter and Definitions 1.8.

Throughout this book, we might make these associations implicitly; for example, we might say
“i is on the unit circle” as a shorthand for “the point (0, 1) representing the complex number i is on
the unit circle.”

Examples 1.17. Which of the following pairs of vectors are parallel? Which point in the same
direction? Which point in opposite directions?

(a) {< 1, 2 >,< −2, 1 >}.
(b) {< 4,−2 >,< −2, 1 >}.
(c) {< 4,−2 >,< 2,−1 >}.
(d) {< 5, 17 >,< 0, 0 >}.

Solutions. See Definitions 1.5.

(a) If < 1, 2 >= c < −2, 1 >, then 1 = −2c, so that c = − 1
2 , while from the second component

c = 2. Similar problems arise when we set < −2, 1 >= c < 1, 2 > . Thus this pair of vectors is not
parallel.

(b) Setting 4 = c(−2) → c = −2; since < 4,−2 >= (−2) < −2, 1 >, we conclude that the vectors
are parallel, pointing in opposite directions.

(c) The same calculations show that < 4,−2 >= 2 < 2,−1 >, thus the vectors are parallel, pointing
in the same direction.

(d) Since < 0, 0 >= 0 < 5, 17 >, the vectors are parallel (in Definitions 1.5, c = 0). Since c is neither
greater than 0 nor less than 0, the two vectors neither point in the same direction, nor in opposite
directions.

Notice also that < 5, 17 > does not equal c < 0, 0 >, for any real c.

People are sometimes reluctant to talk about being parallel to < 0, 0 >, because it implies that
< 0, 0 > has a direction, which is problematic: what is the direction of the wind when there is no
wind?
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HOMEWORK

HWI.1. If I = (1, 2) and T = (−3, 1), get (the components of)
−→
IT , and draw I, T, and

−→
IT .

HWI.2. Get and draw (−1, 2) + 2 < 1, 3 > and < −1, 2 > +2 < 1, 3 > .

HWI.3. Simplify each of the following.

(a) (−1 + 2i) + 2(1 + 3i).

(b) (
√

7−
√

3
2 i).

(c) |1−
√

2i|2.
(d) (1− 2i)(3 + i).

(e) (1−2i)
(3+i) .

(f) |3 + 4i|.

HWI.4. Which of the following pairs of vectors are parallel? Which point in the same direction?
Which point in opposite directions?

(a) < 1,−3 >,< 3,−9 > .

(b) < 1,−3 >,< −3, 9 > .

(c) < 1,−3 >,< 0, 0 > .

(d) < 1,−3 >,< 6, 2 > .

HWI.5. Show that, for any complex z 6= 1,(
1 + z + z2 + · · ·+ zn−1

)
=

1− zn

1− z
,

for n = 1, 2, 3, . . . .

HWI.6. Use conjugation to show that

|zw| = |z||w|,
for any complex z and w.
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HOMEWORK ANSWERS

HWI.1.
−→
IT =< −4,−1 > . See DRAWING 1.12 at the end of this chapter.

HWI.2. (−1, 2) + 2 < 1, 3 >= (1, 8) and < −1, 2 > +2 < 1, 3 >=< 1, 8 > . See DRAWINGS 1.13
at the end of this chapter.

HWI.3. (a) (−1 + 2i) + 2(1 + 3i) = (1 + 8i).

(b) (
√

7−
√

3
2 i) = (

√
7 +

√
3

2 i).

(c) |1−
√

2i|2 = 3.

(d) (1− 2i)(3 + i) = (5− 5i).

(e) (1−2i)
(3+i) = ( 1

10 −
7
10 i).

(f) |3 + 4i| = 5.

HWI.4. (a) < 1,−3 >,< 3,−9 > are parallel and point in the same direction.

(b) < 1,−3 >,< −3, 9 > are parallel and point in opposite directions.

(c) < 1,−3 >,< 0, 0 > are parallel.

(d) < 1,−3 >,< 6, 2 > are not parallel.

HWI.5.

(1−z)
(
1 + z + z2 + · · ·+ zn−1

)
= (1+z+z2+· · ·+zn−2+zn−1)− (z+z2+z3+· · ·+zn−1+zn) = (1−zn),

after extensive cancellation.

HWI.6.
|zw|2 = (zw)(zw) = (zw)(z)(w) = (zz)(ww) = |z|2|w|2 = (|z||w|)2.
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CHAPTER II: Objects and Parameters of Interest.

The objects of interest in geometry are angles (Definitions 2.10) and (pieces of) lines (Definition
2.1) and circles (Definitions 2.6) and the subsets of R2 they enclose (Definitions 2.3 and 2.6).

It is an easy calculation to see that our definitions of length and area (Definitions 2.4 and
postulates of Introduction) are unaffected by translation, that is, by adding a fixed vector to every
point in a set. Since two directed line segments representing the same vector differ only by a
translation (see Definitions 1.1 and 1.2 and DRAWING 1.3 at the end of Chapter I), this means that
we may state all results in terms of vectors; a statement involving vectors is true for any directed
line segment representing a vector (see Definitions 1.1 and 1.2). Standard position (Definitions 1.3)
is often the most convenient representation of a vector.

At first glance, this chapter may seem too long and detailed, for matters that we have a picture
or hand gestures for. We encourage the reader to refer often to the drawings, to hold onto the visual
intuition.

The details are desirable for getting vectors, with their own dynamic intuition and computational
possibilities, into the picture, along with the beginnings of rigor.

Because we will use curves, which may be considered twisted line segments (see Remarks 2.5),
to define angle, so that length of a curve will define the measurement of an angle, we will define
both lines and polygons, and their measures, before we address angles in Definitions 2.10.

Definitions 2.1. All we need to describe a line is a point on the line and a direction.

Given a point P0 and a nontrivial vector ~v, the line thru P0 in the direction ~v is the set of all
points of the form

P = P0 + t~v

for some real t. The vector ~v is a direction vector for the line. See DRAWING 2.1 at the end of
this chapter.

This form of description of a line (sometimes called parametric) actually contains more informa-
tion than Definition 0.3. As in the paragraph at the end of Definitions 1.1, we intuitively think of t
as time, and visualize ourselves traveling along the line, with the clock starting when we are at P0;
positive t corresponds to where we will be in the future, negative t to where we were in the past. In
this visualization, P0 is called the initial point.

Note that
P = P0 + (t− t0)~v (t real)

and
P = P0 + ts0~v (t real)

describe the same line, for any real t0, nonzero s0. It is only the implied sense of motion traveling
along the line that changes; specifically, starting the clock at t = t0 rather than t = 0, or changing
your speed of travel by a factor of |s0|; also, if s0 < 0, the direction of the implied motion is reversed.

The line itself, which may be thought of as a trail left behind from your motion (think of Hansel
and Gretel with bread crumbs, or a slug crawling through your kitchen), does not change.

The ray or half line with initial point P0 is the set of all points of the form

P = P0 + t~v

for t nonnegative. As with a line, ~v is a direction vector for the half line and

P = P0 + ts0~v (t ≥ 0)

describes the same half line, for any positive s0. See DRAWING 2.2 at the end of this chapter.
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Given two points A,B, the line segment from A to B, denoted AB, is the set of all points of
the form

P = A+ t(
−−→
AB), 0 ≤ t ≤ 1.

Intuitively, in this formulation, we are starting (at time t = 0) at A and ending (at time t = 1) at
B. As with a line,

−−→
AB is a direction vector for the line segment.

The points A and B are the endpoints of the line segment from A to B. See DRAWING 2.3
at the end of this chapter.

Note that
P = B + t(

−−→
BA), 0 ≤ t ≤ 1

describes the same line segment, that is, the same set of points, although the implied motion is
different (mainly, in the opposite direction).

In our symbols, AB = BA but
−−→
AB 6=

−−→
BA; AB and BA represent the same line segment, but

−−→
AB

and
−−→
BA represent different directed line segments (see Definitions 1.1). The only difference between

the line segment AB and the directed line segment
−−→
AB or

−−→
BA is the removal of direction.

Two lines or rays or line segments are parallel if they have parallel direction vectors (see
Definitions 1.5). Equivalently (HWII.3), the set of direction vectors for one line equals the set of
direction vectors for the other line.

Example 2.2. If we want to describe the line through A ≡ (1, 3) and B ≡ (−2, 4), we first need a
direction vector; the easiest choice is −−→

AB =< −3, 1 >,
giving us the set of all points

P = (1, 3) + t < −3, 1 >= (1− 3t, 3 + t) (t real).

The half line with initial point (1, 3) is described by

P = (1, 3) + t < −3, 1 >= (1− 3t, 3 + t) (t ≥ 0).

and the line segment from (1, 3) to (−2, 4) is

P = (1, 3) + t < −3, 1 >= (1− 3t, 3 + t) (0 ≤ t ≤ 1).

See DRAWINGS 2.4 at the end of this chapter.

The line above is also described by

P = (−2, 4) + t < −3, 1 >= (−2− 3t, 4 + t) (t real),

intuitively starting at (−2, 4) instead of (1, 3), or

P = (1, 3) + t < 3,−1 >= (1 + 3t, 3− t) (t real),

intuitively travelling the same line in the opposite direction; or

P = (1, 3) + 2t < −3, 1 >= (1− 6t, 3 + 2t) (t real),

intuitively travelling twice as fast.

Let’s describe the same line in the language of Chapter 0. Use the direction vector < −3, 1 >
to get the slope m = 1

−3 = − 1
3 (see DRAWINGS 2.4 at the end of this chapter and Definition 0.4).

For arbitrary (x, y) on the line, using Definition 0.4 and the point (1, 3) on the line,

−1
3

=
y − 3
x− 1

→ (y−3) = −1
3
(x−1) → y = 3−1

3
x+

1
3

= −1
3
x+

10
3

OR 3(y−3) = −(x−1) → x+3y = 10.

Using the point (−2, 4) instead of (1, 3):

−1
3

=
y − 4
x+ 2
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leads to the same equations describing the line.

Definitions 2.3. For n = 3, 4, 5, ..., the n-sided polygon, or n-gon, is defined by n (different) points
P1, P2, . . . , Pn = P0 and the connected sequence of line segments they determine, P1P2 (from P1 to
P2), P2P3 (from P2 to P3), P3P4, . . . , Pn−1Pn, and PnP1 = P0P1, with no line segments intersecting
except at shared endpoints. Consecutive sides are assumed to be not parallel.

Not all sequences P1, P2, . . . will produce such a polygon; see HWII.4.

The points P1, P2, . . . , Pn are vertices (singular: vertex) of the polygon. The connected se-
quence of line segments is the boundary or edge or sides of the polygon and the area enclosed by
those line segments is the interior or inside of the polygon; that area is also sometimes called a
polygonal region. See DRAWING 2.5 at the end of this chapter.

For k = 0, 1, 2, . . . , (n− 1), let
−→
Sk ≡

−−−−−→
PkPk+1.

An n-gon is best described by the sequence of vectors
−→
Sk, k = 0, 1, 2, . . . , (n− 1), with

n−1∑
k=0

−→
Sk ≡

(−→
S0 +

−→
S1 +

−→
S2 + · · ·+

−→
S n−1

)
= ~0.

See DRAWING 2.6 at the end of this chapter.

A polygon (to be precise, the union of its interior and boundary) is convex if the line segment
between any two points in the interior or boundary of the polygon is contained in the interior or
boundary of the polygon. See DRAWING 2.7 at the end of this chapter.

A triangle is a 3-gon. A quadrilateral is a 4-gon. A parallelogram is a quadrilateral whose
nonconsecutive sides are parallel.

A triangle formed by ~a and ~b will mean a triangle with vertices I, I + ~a and I +~b, for some
point I. See DRAWING 2.8(a) at the end of this chapter.

A parallelogram formed by ~a and ~b will similarly mean a parallelogram with vertices I, I +
~a, I +~b, I + ~a+~b, for some point I.

We will see later (Proposition 3.3 and Corollary 3.4) that all parallelograms have this form,
because nonconsecutive sides of a parallelogram automatically have equal length. See DRAWING
2.8(b) at the end of this chapter.

We will assume, without proof, throughout this book, that any n-gon is the union of (n − 2)
triangles whose interiors do not overlap.

The parameters, that is, measurements, of interest are length and area (as we mentioned before,
measurement of angle will also be a certain length).

Definitions 2.4. Recall that our postulates, in the Introduction, require that only three assump-
tions (at least, when armed with calculus), one for length and one for area, along with placement in
the Cartesian plane, must be made.

Here we place the length postulate in the language of vectors.

The length or norm or magnitude of the vector < v1, v2 > is (see DRAWINGS 2.9 at the end of
this chapter)

‖ < v1, v2 > ‖ ≡
√
v2
1 + v2

2 .
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Note that this is the distance (Definition 0.2) from the initial point of a directed line segment
representing < v1, v2 > to its terminal point; see DRAWING 0.3 at the end of Chapter 0 and
DRAWING 1.1 at the end of Chapter I. For the complex number analogue, note also that ‖~v‖ =
|v1 + iv2| (see Definitions 1.9).

The length of the line segment from A to B is the length of the directed line segment
−−→
AB.

A unit vector is a vector of norm one. Intuitively, a vector has direction and magnitude; if we
wish to focus on direction, it is natural to use unit vectors.

The perimeter of a polygon is the sum of the lengths of the sides.

Remarks 2.5. Calculus, which should always be viewed as a doctor-prescribed wonder drug, uses
approximations followed by limiting processes to extend length and area from the Postulates of the
Introduction to a large class of curves and subsets of R2 (see Appendices One and Two).

Of particular interest will be the lengths of arcs of circles (see Definitions 2.6 and 2.18), since
angle (see Definitions 2.10) will be defined to be such an arc, and the measure of that angle will be
its length.

The invariance under translation, for length and area, as mentioned at the beginning of this
chapter, extends to arbitrary curves and subsets of R2; see Propositions APP1.3 and APP2.2.

The reader should assume that length and area are additive (see Appendices One and Two).
For length, this means that, if C1 and C2 are two curves that intersect at only finitely many points
and C is the union of C1 and C2, then

length of C = (length of C1) + ( length of C2).

For area, additivity means that, if Ω1 and Ω2 are two subsets of R2 that intersect at most only on
a curve and Ω is the union of Ω1 and Ω2, then

area of Ω = ( area of Ω1) + ( area of Ω2).

See DRAWINGS 2.9 at the end of this chapter.

Physically, a curve may be thought of as a piece of string arranged in a particular way in R2.
The length is realized by picking up the string, pulling it straight, and aligning it with a ruler marked
with inches.

The area of a subset of R2 may be approximated by covering it with as few as possible one inch
by one inch squares.

Definitions 2.6. The circle of radius R, centered at (h, k) is the set of points (x, y) that satisfy

(x− h)2 + (y − k)2 = R2.

Note that these are points whose distance (Definition 0.2) to (h, k) equals R.

When we think of R2 as the complex plane (Definitions 1.8), then said circle is the set of all
complex z such that

|z − (h+ ik)| = R.

See DRAWINGS 2.10 at the end of this chapter.

The open disc of radius R, centered at (h, k) is the inside of the circle: points (x, y) that satisfy

(x− h)2 + (y − k)2 < R2.

In complex language, this is the set of all z such that

|z − (h+ ik)| < R.
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The closed disc of radius R is the same as the open disc, with “≤” replacing “<.”

Consistent with the definition of boundary of a polygon (Definitions 2.3), the circle defined
above is the boundary of the (open or closed) disc defined above. More generally, if Ω is a subset
of R2 enclosed by a curve C, then C is the boundary of Ω.

The circumference of a circle or disc is the length of the circle. A consequence of Lemma 2.8
will be that the circumference of a circle of radius R is 2πR, where π is defined in Definition 2.7.

A chord in a disc is a line segment between two points on the boundary. A diameter is a
chord that goes thru the center of this disc.

See DRAWINGS 2.10 at the end of this chapter.

Definition 2.7. The number π (written “pi” and pronounced “pie”) is the length of the upper
half of the unit circle

{(x, y) |x2 + y2 = 1, y ≥ 0}.
See Proposition APP3.3 for a rigorous definition.

By Proposition APP2.3(b), π also equals the length of the lower half of the unit circle

{(x, y) |x2 + y2 = 1, y ≤ 0},
thus 2π equals the length of the entire unit circle

{(x, y) |x2 + y2 = 1}.

We introduced the polar form of a complex number in Definition 1.15. Armed with the idea of
length, we may now assert that every nonzero complex number has a polar form reiθ, with θ being
a particular length.

Lemma 2.8. Every nonzero complex number z has a polar form

z = Reiθ,

with R = |z|, 0 ≤ θ ≤ 2π, and Rθ equal to the length of Cθ,R, where

Cθ,R ≡ {Reit | 0 ≤ t ≤ θ}.

Proof: Appendix Three, APP3.5. See DRAWING 2.11 at the end of this chapter. �

Examples 2.9. Let’s apply Lemma 2.8 for some particular choices of θ.

By Definition 2.7, eiπ = −1 and e2πi = 1; much more generally, by Theorem 1.12(1),

ei(π+θ) = eiπeiθ = −eiθ and ei(2π+θ) = e2πieiθ = eiθ

for any real θ. As θ increases, we move counterclockwise around the unit circle x2 + y2 = 1, thus it
is not surprising that we eventually come back to where we started. See DRAWING 2.12 at the end
of this chapter.

Since −1 = eiπ =
(
ei

π
2
)2
, we have ei

π
2 = i.

Similarly,
(
ei

3π
2

)2

= −1, but we did not choose ei
3π
2 as i, because the length of C 3π

2 ,1
is 3π

2 ,

which is greater than π, the length of Cπ,1 (see Lemma 2.8 and DRAWING 2.11 at the end of this
chapter); ei

3π
2 is the other square root of −1, −i. See DRAWING 2.13 at the end of this chapter.

Since the real numbers were enlarged by throwing in i ≡
√
−1, it might appear (a famous science

fiction writer asserted this) that the complex numbers could be enlarged by adding on
√
i. This is

not true: both square roots of i are complex numbers.
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We can calculate
√
i directly. We want a+ bi, with a and b real, so that

i = (a+ bi)2 = (a2 − b2) + i(2ba),

so that
(a2 − b2) = 0 and 2ba = 1,

which leads to (a, b) = ±
[
( 1√

2
) + i( 1√

2
)
]
.

Since ei
π
2 = i, Theorem 1.12(1) and Lemma 2.8 imply that

ei
π
4 =

[
(

1√
2
) + i(

1√
2
)
]

and ei
5π
4 = −

[
(

1√
2
) + i(

1√
2
)
]
.

Note that ei
π
4 is on the line y = x, bisecting the first quadrant of the xy plane. See DRAWING 2.13

at the end of this chapter.

Definitions 2.10. (a) Suppose ~a and~b are nontrivial vectors that do not point in the same direction.
Define the two angles between ~a and ~b as follows (see DRAWINGS 2.14 at the end of this chapter).

1. Represent ~a and ~b by directed line segments in standard position.

2. Use Lemma 2.8 and Definition 2.7 to choose real θ1, θ2 such that 0 ≤ θ1 < θ2 < θ1 + 2π,

~a

‖~a‖
= eiθ1 and

~b

‖~b‖
= eiθ2 .

Here we are, for any real θ, thinking of eiθ as being a vector, as in 1.16.

The counterclockwise angle from ~a to ~b is

{eiθ | θ1 ≤ θ ≤ θ2}.

The measure of this angle is (θ2 − θ1) radians.

The clockwise angle from ~a to ~b is the counterclockwise angle from ~b to ~a:

{eiθ | θ2 ≤ θ ≤ θ1 + 2π}.

The measure of this angle is (θ1 + 2π − θ2) = 2π − (θ2 − θ1) radians.

See DRAWINGS 2.14 at the end of this chapter.

(b) If ~a and ~b are not parallel, then the angle between ~a and ~b is the angle of smallest measure
from ~a to ~b.

If ~a and ~b point in the same direction, then use Lemma 2.8 and Definition 2.7 to choose θ0, with
0 ≤ θ0 < 2π, so that

~a

‖~a‖
= eiθ0 =

~b

‖~b‖
.

Then the angle between ~a and ~b is {eiθ0}.

The measure of this angle is 0 radians.

See Corollary 2.14(b), to see why we can’t have “angle between ~a and ~b” when ~a and ~b point in
opposite directions.

Notice that measuring angle is reduced to measuring length: by Lemma 2.8, the measure of an
angle between two vectors is the length of a piece of the circle of radius one centered at the origin
x2 + y2 = 1 (see DRAWINGS 2.14 at the end of this chapter). The already-stated invariance of
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length under translation (Proposition APP2.3(a)) implies that we could translate the shared initial
point of ~a and ~b to some point C, then translate an angle from ~a to ~b by the same point C without
affecting the measure of the angle.

See Definitions APP2.1 for a rigorous (calculus) definition of length of a curve; for circular
length, hence angle measure, see Lemma 2.8 and APP3.5.

The angles between two intersecting lines, rays, or line segments are defined to be the angles
between direction vectors for the lines, rays, or line segments.

Throughout this book, if no units are mentioned, it is assumed that angles are measured in
radians.

Since angle measure is determined by length, it is additive: that is, if the counterclockwise angle
from ~a to ~b has measure θ1 and the counterclockwise angle from ~b to ~c has measure θ2, then the
counterclockwise angle from ~a to ~c has measure (θ1 + θ2).

Examples 2.11. By Examples 2.9, <1,1>
‖<1,1>‖ = ei

π
4 and < 0, 1 >= ei

π
2 (see DRAWINGS 2.15(1)

at the end of this chapter), thus the counterclockwise angle from < 1, 1 > to < 0, 1 > is (see
DRAWINGS 2.15(2) at the end of this chapter),

{eiθ | π
4
≤ θ ≤ π

2
},

with measure (π2 −
π
4 ) = π

4 .

The clockwise angle from < 1, 1 > to < 0, 1 > is (note that 2π + π
4 = 9π

4 )

{eiθ | π
2
≤ θ ≤ 9π

4
},

with measure ( 9π
4 − π

2 ) = (2π − π
4 ) = 7π

4 (see DRAWINGS 2.15(3) at the end of this chapter).

Since π
4 <

7π
4 , the angle between < 0, 1 > and < 1, 1 > is

{eiθ | π
4
≤ θ ≤ π

2
},

with measure π
4 .

Again using Examples 2.9, since < −1, 0 >= eiπ, the counterclockwise angle from < 0, 1 > to
< −1, 0 > is

{eiθ | π
2
≤ θ ≤ π},

with measure (π − π
2 ) = π

2 (see DRAWINGS 2.15(4) at the end of this chapter).

By additivity of angles, the counterclockwise angle from < 1, 1 > to < −1, 0 > is

{eiθ | π
4
≤ θ ≤ π},

with measure (from previous angle calculations in this example) (π − π
4 ) = 3π

4 (see DRAWINGS
2.15(5) at the end of this chapter).

Notice that we are adding two counterclockwise measures: the measure of π
4 from < 1, 1 > to

< 0, 1 > added to the measure of π
2 from < 0, 1 > to < −1, 0 > .

Intuitively, angle is like opening a door or a crocodile’s mouth. With the door, the angle is
between the door and the wall it’s hinged to. With the crocodilian mouth, the angle is between the
upper and lower jaws; the measure of the angle begins at zero, as the crocodile feigns unconsciousness,
then increases as the mouth opens more.
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It should be noted here that, since the definition of angle (Definitions 2.10) between vectors ~a
and ~b involve the unit vectors (Definitions 2.4) ~a

‖~a‖ and ~b

‖~b‖
, angle is unchanged by replacing a vector

with another vector that points in the same direction.

Proposition 2.12. Suppose ~v1 points in the same direction as ~v2 and ~v3 points in the same direction
as ~v4. Then, the counterclockwise angle from ~v1 to ~v3 equals the counterclockwise angle from ~v2 to
~v4.

The following theorem emphasizes further the role of complex exponentials in Definitions 2.10
and DRAWING 2.14 at the end of this chapter: when vectors are placed in standard position,
multiplication by eiθ rotates a vector θ radians counterclockwise. See DRAWING 2.16 at the end of
this chapter.

In the following, as with Definitions 2.10, see 1.16 for the equating of point, vector and complex
number.

Theorem 2.13. For any nontrivial vector ~v in standard position and 0 ≤ θ < 2π, the measure of
the counterclockwise angle from ~v to (eiθ~v) is θ.

Proof: By Lemma 2.8, there exists φ, with 0 ≤ φ ≤ 2π, so that ~v
‖~v‖ = eiφ. Then

eiθ~v

‖eiθ~v‖
= eiθeiφ = ei(θ+φ),

so that, by Definitions 2.10, the measure of the counterclockwise angle from ~v to (eiθ~v) is θ.
See DRAWING 2.16 at the end of this chapter. �

Corollary 2.14. All vectors in the following are nontrivial.

(a) A vector ~w makes an angle of measure π
2 with another vector ~v if and only if ~w makes an angle

with ~v of the same measure as with (−~v). (This is what Euclid called a right angle.)

(b) Suppose ~a and ~b point in opposite directions. Then π equals the measure of both the clockwise
and counterclockwise angles from ~a to ~b.

(c) For any real numbers x1, y1, the measure of the counterclockwise angle from < x1, y1 > to
< −y1, x1 > is π

2 .

See DRAWINGS 2.17 at the end of this chapter.

Proof: By Proposition 2.12, we may assume ~b = ~a in (a) and ~b = −~a in (b).

(b) is Theorem 2.13, with ~v ≡ ~a and θ ≡ π, since (−1) = eiπ.

(c) Note that i(x1 + iy1) = (−y1 + ix1); in the equating of vectors and complex numbers of 1.16,
this is

ei
π
2 < x1, y1 >= i < x1, y1 >=< −y1, x1 >,

so that (c) follows from Theorem 2.13, with ~v ≡< x1, y1 >, θ ≡ π
2 .

(a) follows from (b) and the additivity of angle measure. �

Remarks 2.15. We shall see (beginning with Chapter IV) that angles of measurement π
2 play a

distinguished role in the physical and mathematical world.
The relationship between < x1, y1 > and < −y1, x1 > in (c) of Corollary 2.14 will be clarified

in Chapter IV; they are orthogonal (Definition 4.3), meaning they have dot product (Definition 4.1)
zero.

Definitions 2.16. In a convex polygon (see Definitions 2.3), the interior angle at a vertex
is the angle within the area enclosed by the sides. An exterior angle at a vertex is the angle
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between one side meeting at the vertex and the extension of the other side meeting at the vertex.
See DRAWINGS 2.18 at the end of this chapter, where, in (b), we have also calculated the measures
of the interior angles of the triangle formed by < −1, 0 > and < 0, 1 >, similarly to Examples 2.11.

If θ is the measure of the interior angle, then (π − θ) is the measure of each of the two exterior
angles, by Corollary 2.14(b) and additivity of angle measures. Notice (see DRAWINGS 2.18(a) at
the end of this chapter) that the measure of an exterior angle at a vertex represents the change of
direction of a person traveling around the boundary of the polygon.

Definition 2.17. A much older parameter for measuring angles is degrees. The goal is to have
a complete circumference be 360 degrees. In general, for any real θ, θ radians is 180θ

π degrees. π
2

radians, for example, is 90 degrees, π radians is 180 degrees, etc.
The only reason for preferring degrees to radians is custom, which is the worst possible reason

for anything. Degrees were introduced by the Babylonians, who also had base 60 numeration, and
introduced the custom of 60 minutes to an hour and 60 seconds to a minute.

Definitions 2.18. Our definition of angle (Definitions 2.10) leads naturally to the following com-
pletions of Definitions 2.6.

Let’s put a circle and disc of radius R centered at (the complex number) C in complex form:
the circle is

{z | |z − C| = R} or {C +Reiθ | 0 ≤ θ ≤ 2π};
the closed disc is

{z | |z − C| ≤ R} or {C + reiθ | 0 ≤ θ ≤ 2π, 0 ≤ r ≤ R}.

An arc of this circle is, for 0 ≤ θ1 ≤ θ2 < θ1 + 2π as in the definition of counterclockwise angle,

{C +Reiθ | θ1 ≤ θ ≤ θ2};
the corresponding closed sector of the disc, determined by the arc, is

{C + reiθ | θ1 ≤ θ ≤ θ2, 0 ≤ r ≤ R}.

See DRAWINGS 2.19 at the end of this chapter. The boundary of the closed sector is the arc
combined with the two lines from the center to the circle, that enclose the sector. The perimeter
of the sector is the length of the boundary. The arclength is the length of the arc; we apologize for
terminology that neither shocks nor surprises.

Proposition 2.19. Consider an arc and sector as in Definitions 2.18.

(a) The measure of the angle between the two lines in the boundary of the sector is (θ2 − θ1).

(b) The length of the arc is R(θ2 − θ1).

(c) The perimeter of the sector is 2R+R(θ2 − θ1).

Proof: (a) is clear from Definitions 2.10, after we translate C to the origin (see comments after
Definitions 2.10). (b) follows from Lemma 2.8, then (c) follows from (b). �

We will address the area of the sector in Theorem 12.4; it turns out to be 1
2R

2(θ2 − θ1).

See DRAWINGS 2.19 at the end of this chapter.

Note that radian measures of angles are arclength divided by radius. Radians are unitless, e.g.,
meters divided by meters.

Examples 2.20. All curves that are not line segments are arcs of a circle.
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(a) Find the length of the arc in DRAWING 2.20 at the end of this chapter.

(b) Find the perimeter of the shaded sector and the unshaded sector in DRAWING 2.21 at the end
of this chapter.

(c) Find the length of the curve in DRAWING 2.22 at the end of this chapter.

Solutions. (a) 150( π
180 ) = 5π

6 radians, so the length of the arc is 5( 5π
6 ) = 25π

6 meters.

(b) 240( π
180 ) = 4π

3 radians, so the perimeter of the shaded sector is 20 + 10(4π
3 ) = 20 + 40π

3 .

The unshaded sector has angle 2π − 4π
3 = 2π

3 , so the perimeter of the unshaded sector is
20 + 10( 2π

3 ) = 20 + 20π
3 .

(c) 16 + ( 3π
8 )16 = (16 + 6π) feet.

Terminology 2.21. We will indicate equality of length or angle measure as in DRAWINGS 2.23
at the end of this chapter.
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HOMEWORK

HWII.1. Suppose m is a real number. Show that a line has slope m (see Definitions 0.4) if and
only if it has direction vector < s, sm >, for all real s 6= 0.

HWII.2. Show that a line has slope ∞ (see Definitions 0.4) if and only if it has direction vector
< 0, t >, for all real t 6= 0.

HWII.3. Prove that two lines or rays or line segments are parallel if and only if the set of direction
vectors for one line equals the set of direction vectors for the other line.

HWII.4. Give four points P1, P2, P3, P4 such that the line segments in Definitions 2.3, P1P2 (from
P1 to P2), P2P3 (from P2 to P3), P3P4, and P4P1, do not produce a polygon as described in Definitions
2.3.

HWII.5. Write a parametric form P = P0 + t~v for the line y = −2x+ 5.

HWII.6. For arbitrary real numbers a, b, c, get a direction vector for ax+ by = c in terms of a, b, c.

HWII.7. Find the perimeter of the triangle formed by < 1,−2 > and < 3, 4 > .

HWII.8. For what real number α is < 1, α > parallel to < 2,−3 >?

HWII.9. Let P ≡ (−2, 1) and Q ≡ (3, 5). Find

(a) The line segment from P to Q;

(b) The half line through Q with initial point P ; and

(c) The line through P and Q.

HWII.10. Write the line 2x+ 5y = 7 in a parametric form.

HWII.11. Write each of the following in the form (a+ bi), for real numbers a, b.

(a) e4πi;

(b) e5πi;

(c) e
13π
4 i HINT: 13

4 = 3 + 1
4 ;

(d) e
17π
4 i;

(e) i3;

(f) i18;

(g) e
π
3 i HINT: for any complex z and w, (z +w)3 = z3 + 3z2w + 3zw2 +w3. See Examples 6.5 and

7.11(e) for other techniques, after we’ve acquired more tools.

HWII.12. Find the clockwise and counterclockwise angle from < −1, 1 > to < 1, 1 >, and find the
measure of each angle.

HWII.13. All curves drawn are either line segments or arcs of a circle centered on a dot inside the
corresponding disc.

(a) Find the length of the arc in DRAWING 2.24 at the end of this chapter.

(b) Find the perimeter of the shaded sector and the unshaded sector in DRAWING 2.25 at the end
of this chapter.

(c) Find the length of the curve in DRAWING 2.26 at the end of this chapter.

HWII.14. Find a unit vector that points in the same direction as < 2,−3 > .

HWII.15. Write the line (−3, 2) + t < 2, 5 > in the form ax+ by = c, for some real numbers a, b, c.
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HOMEWORK ANSWERS

HWII.1. If a line has direction vector < s, sm >, for some nonzero s, then it has, for some real
a, b, with (a, b) on the line, the form (see Definitions 2.1)

P = (a, b) + t < s, sm > (t real),

thus (a, b) and (a+ s, b+ sm) = (a, b)+ < s, sm > are two points on the line, so that the slope is
(b+ sm)− b

(a+ s)− a
= m.

Conversely, if a line has slope m, then y = mx + b is the equation of the line, for some real b;
thus, for any s 6= 0,

{points on the line} = {(x,mx+b) |x is real} = {(0, b)+x < 1,m > |x is real} = {(0, b)+x

s
< s, sm > |x is real}

= {(0, b) + t < s, sm > | t is real},
thus the line has direction vector < s, sm >, for any s 6= 0.

HWII.2. A line has slope ∞ ⇐⇒ the line has the form x = c ⇐⇒
the line equals {(c, y) | y is real} ⇐⇒

the line equals {(c, 0) + y < 0, 1 > | y is real} ⇐⇒
the line equals, for any t 6= 0, {(c, 0) +

y

t
< 0, t > | y is real} ⇐⇒

the line equals, for any t 6= 0, {(c, 0) + s < 0, t > | s is real} ⇐⇒
the line has direction vector < 0, t >, for any t 6= 0.

HWII.3. For a fixed line, we need to characterize the set of all possible direction vectors for the
line.

First suppose the line has finite slope m. We have already seen, in HWII.1, that anything of the
form < s, sm >, for s nonzero, is a direction vector for the line. We will now show that all direction
vectors for said line have this form: suppose ~v =< v1, v2 > is a direction vector for a line of finite
slope m. Since m is finite, v1 6= 0. The parametric form for this line is then, for some real x0, y0,

(x, y) = P = P0 + t~v = (x0, y0) + t < v1, v2 >= (x0 + tv1, y0 + tv2),

so that

m =
(y0 + tv2)− y0
(x0 + tv1)− x0

=
v2
v1
,

thus v2 = mv1, so that ~v =< v1,mv1 >, exactly the form of the direction vectors in HWII.1.

A similar argument, as in the proof of HWII.2, shows that the set of all direction vectors for a
line of infinite slope equals {< 0, s > | s 6= 0}.

We will find it convenient to state what we’ve accomplished so far as follows.

HWII.3 Lemma. (a) If ` is a nonvertical line, then the set of all direction vectors for ` is

Sm ≡ {~v =< v1, v2 > | v2
v1

= m},

where m is the slope of `.

(b) If ` is a vertical line (of the form x = c, for some fixed real c), then the set of all direction vectors
for ` is

S∞ ≡ {< 0, s > | s 6= 0}.

Any two vertical lines x = c1 and x = c2 are parallel because they have parallel direction vectors
of the form < 0, s1 > and < 0, s2 >, for some nonzero s1, s2. It is also the case that any two vertical
lines have the same set of direction vectors S∞.

If one line is vertical and the other line is nonvertical, then it is clear from HWII.3 Lemma that
they are not parallel, since nothing in S∞ is parallel to anything in Sm, for any real m. It is also the
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case that the set of direction vectors of a vertical line does not equal the set of direction vectors for
a nonvertical line, again by HWII.3 Lemma.

We have shown the equivalence of being parallel and having the same set of direction vectors,
for a pair of lines, at least one of which is vertical. Thus we may assume, for the rest of HWII.3,
that we have two lines `1 and `2 neither of which is vertical.

Suppose `1 and `2 are parallel. Then there are parallel vectors ~v =< v1, v2 > and ~w =< w1, w2 >
such that ~v is a direction vector for `1 and ~w is a direction vector for `2. Being parallel and nontrivial
implies that there is nonzero r so that

< v1, v2 >= ~v = r ~w =< rw1, rw2 >,

so that v2
v1

= rw2
rw1

= w2
w1
. Thus, by HWII.3 Lemma(a),

{direction vectors for `1} = S v2
~v1

= Sw2
~w1

= {direction vectors for `2}.

Conversely, if
{direction vectors for `1} = {direction vectors for `2},

then there is a vector ~v that is a direction vector for both `1 and `2, thus `1 and `2 are parallel.

HWII.4. See DRAWING 2.27 at the end of this chapter, where we have drawn a parallelogram
with edges

−−−→
P1P3,

−−−→
P3P2

−−−→
P2P4 and

−−−→
P4P1. Here the sequence of points P1, P2, P3, P4 do not produce a

quadrilateral, as in Examples 2.3.

HWII.5. P = (0, 5) + t < 1,−2 > (t real)

HWII.6. For b 6= 0, a direction vector is < b,−a > (or < sb,−sa >, for any nonzero real s).
For b = 0, a direction vector is < 0, 1 > (or < 0, s >, for any nonzero real s).

HWII.7. [‖ < 1,−2 > ‖+ ‖ < 2, 6 > ‖+ ‖ < 3, 4 > ‖] = 2(
√

5 +
√

10).

HWII.8. Setting < 1, α >= c < 2,−3 >, for some real c, implies that c = 1
2 , so that α = − 3

2 .

HWII.9. For all parts, we need
−−→
PQ =< 5, 4 > .

(a) All points of the form P = (−2, 1) + t < 5, 4 > (0 ≤ t ≤ 1).

(b) All points of the form P = (−2, 1) + t < 5, 4 > (t ≥ 0).

(c) All points of the form P = (−2, 1) + t < 5, 4 > (t real).

HWII.10. The slope m = − 2
5 and the y intercept b = 7

5 , so we may write

P = (0,
7
5
) + t < 1,−2

5
> (t real),

or, to avoid fractions in the direction vector,

P = (0,
7
5
) + t < 5,−2 > (t real).

HWII.11. (a) 1 (b) −1 (c) − 1√
2
(1 + i) (d) 1√

2
(1 + i) (e) −i (f) −1

(g) Setting (−1) = eiπ = (ei
π
3 )3 = (a+ bi)3 leads to a = 1

2 , b =
√

3
2 ; that is, our desired exponential

is 1
2 (1 +

√
3).

HWII.12. The clockwise angle is {eiθ | π4 ≤ θ ≤ 3π
4 }. The counterclockwise angle is

{eiθ | 3π
4 ≤ θ ≤ 2π + π

4 }.

The measure of the clockwise angle is ( 3π
4 − π

4 ) = π
2 .

The measure of the counterclockwise angle is ((2π + π
4 )− 3π

4 ) = (2π − π
2 ) = 3π

2 .
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HWII.13. (a)

(10 feet)
(

120 degrees(
π radians

180 degrees
)
)

=
20π
3

feet.

(b)

shaded sector perimeter is (16 feet) + (8 feet)(
11π
12

) = (16 +
22π
3

) feet.

unshaded sector perimeter is (16 feet) + (8 feet)(
13π
12

) = (16 +
26π
3

) feet.

(c)

(24 meters) + (12 meters)(
9π
8

) = (24 +
27π
2

) meters.

HWII.14. 1
‖<2,−3>‖ < 2,−3 >= 1√

13
< 2,−3 > .

HWII.15. Slope 5
2 , with (−3, 2) on line; y−2

x+3 = 5
2 → −5x+ 2y = 19.
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CHAPTER III: Some Parallel Geometry.

This section will present some geometric consequences of the concept of being parallel (see
Definitions 1.5 and 2.1). Parallelograms (Definitions 2.3) will receive particular attention; see 3.3–
3.5, 3.8, and 3.13. Triangles also will begin to be of interest in Propositions 3.9, 3.14, and 3.15; they
will make a much stronger appearance in later chapters.

Although we begin with matters related to parallel lines, one of the consequences will be infor-
mation about interior angles of triangles and parallelograms; see Propositions 3.6–3.9.

Let’s begin by giving some more familiar characterizations of being parallel; another intuitive
equivalence will be given in Chapter V (Theorem 5.2), after we’ve used orthogonality to discuss
distance from a point to a line.

Theorem 3.1. The following are equivalent, for two different lines l1 and l2.

(a) l1 and l2 never intersect.

(b) l1 and l2 are parallel.

(c) l1 and l2 have the same slope.

Proof: Let l1 be described by
P = P1 + t~v1 (t real),

l2 by
P = P2 + t~v2 (t real).

(b) → (a). Suppose l1 and l2 are parallel. Then we may assume ~v1 = ~v2 (see Definitions 2.1). If l1
and l2 intersect, let P0 be a point of intersection. There then exist real t1, t2 so that

P0 = P1 + t1~v1 = P2 + t2~v2;

thus l1 may be rewritten as the set of points

P = P1 + t~v1 = P1 + t1~v1 + (t− t1)~v1 = P0 + (t− t1)~v1 (t real);

identically, l2 may be rewritten as the set of points

P = P0 + (t− t2)~v1 (t real).

These are the same lines; we have shown that, if l1 and l2 intersect, then they are the same lines.
Since we are assuming l1 and l2 are different lines, we have shown that l1 and l2 cannot intersect,
when l1 and l2 are parallel.

(a) → (b). Suppose ~v1 and ~v2 are not parallel. We wish to find a point of intersection of the lines
l1 and l2; this means we need real s, t so that

P1 + s~v1 = P2 + t~v2;

in purely vector language,
−s~v1 + t~v2 =

−−−→
P2P1.

Writing components ~v1 =< x1, y1 >,~v2 =< x2, y2 >,
−−−→
P2P1 =< b1, b2 >, this vector equation is

equivalent to (setting components equal) two real equations

−x1s + x2t = b1
−y1s + y2t = b2

We leave it to the student to solve for s and t, by whatever method he/she is familiar with. All we
care about is that there is a solution: the exact expression turns out to be

(s, t) =
1

(y1x2 − x1y2)
(y2b1 − x2b2, y1b1 − x1b2).

NOTE that the denominator (y1x2−x1y2) is zero precisely when ~v1 and ~v2 are parallel. Thus, when
the direction vectors ~v1 and ~v2 are not parallel, we are guaranteed a point of intersection for the
lines l1 and l2.
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(b) ⇐⇒ (c). First suppose neither line has infinite slope. Let m1 be the slope of l1,m2 the slope
of l2. Then l1 has direction vector < 1,m1 >, while l2 has direction vector < 1,m2 > (HWII.1).

`1 and `2 are parallel if and only if < 1,m1 >= α < 1,m2 > for some real α if and only if
m1 = m2.

l1 has infinite slope if and only if < 0, 1 > is a direction vector for it (HWII.2). This is parallel
to l2 if and only if l2 has a direction vector of < 0, t >, for some nonzero t, which is equivalent to l2
having infinite slope (HWII.2). �

The following assertion is famously known as the “parallel postulate” because it turned out to
be independent of Euclid’s first four postulates. For us, it is not a postulate, but follows from our
postulates stated in the Introduction; see Chapter XIII for constructing the desired parallel line.

Proposition 3.2. (parallel “postulate”) Given a line ` and a point P, there is a unique line thru
P parallel to `. See DRAWING 3.1 at the end of this chapter.

Proof: Let ~v0 be a direction vector for `. Then `0 ≡ {P + t~v0 | t is real} is a line thru P parallel to
` (see Definitions 1.5 and 2.1).

For uniqueness, suppose `1 is a line thru P parallel to `. Since `1 is parallel to `, we may use ~v0
as a direction vector for `1; that is, for some point P1 on `1,

`1 = {P1 + s~v0 | s is real}
Since P is on `1, there’s real s1 so that

P = P1 + s1~v0

so that `1 is the set of all points of the form

P + (s− s1)~v0 (s real),

which is the same as the line `0 (see Definitions 2.1). �

Proposition 3.3. In a parallelogram, opposite sides have equal length.

Proof: By definition of a parallelogram (Definitions 2.3), there are consecutive vectors ~a,~b, s~a, t~b,
for some nonzero s, t, such that we may denote the sides by ~a,~b, s~a, t~b, with

~a+~b+ s~a+ t~b = ~0,

as in DRAWING 3.2 at the end of this chapter.

Then
(1 + s)~a = −(1 + t)~b;

Since ~a and ~b are not parallel (see Definitions 2.3), this implies that

(1 + s) = 0 = −(1 + t),

so that s = t = −1, quickly implying that s~a, the side opposite ~a, has the same length as ~a, likewise
for ~b. �

Corollary 3.4. Any parallelogram may be characterized by two vectors and one point: vertices
I, I + ~a, I +~b, I + ~a+~b, as in DRAWING 2.8(b) at the end of Chapter II.
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Proposition 3.5. A quadrilateral with a pair of nonconsecutive sides that are parallel and of equal
length is a parallelogram.

Proof: If ~a and ~d are parallel and of equal length, then ~d equals ~a or (−~a). Thus we may denote
the sides of the quadrilateral by ~a,~b,−~a,~c, with

~a+~b+ (−~a) + ~c = ~0,

as in DRAWING 3.3 at the end of this chapter.

Simplifying, we get
~b = −~c,

so that both pairs of opposite sides are parallel, showing that the quadrilateral is a parallelogram. �

Proposition 3.6. Suppose `1, `2, and `3 are lines, with `1 and `2 parallel, `3 intersecting both
`1 and `2 and angles of measure θj , j = 1, 2, . . . , 8 as drawn in DRAWING 3.4 at the end of this
chapter.

Then θ1 + θ2 = π, θ1 = θ3 = θ5 = θ7, and θ2 = θ4 = θ6 = θ8.

Proof: For j = 1, 2, 3, let ~vj be a direction vector for `j . Since `1 and `2 are parallel, we may assume
~v1 = ~v2 (see Definitions 2.1).

θ1 is the measure of the counterclockwise angle from ~v1 to ~v3 and θ5 is the measure of the
counterclockwise angle from ~v2 to ~v3; since ~v1 = ~v2, it follows that θ1 = θ5. See DRAWING 3.5 at
the end of this chapter.

By definition of π and the additivity of angles (see Definitions 2.10 and Proposition 2.12),
θ1 + θ2 = π = θ3 + θ2; it follows that θ1 = θ3. The other equalities follow identically. �

In DRAWING 3.4 at the end of this chapter, `3 is a transversal, the angles of measure θ1 and
θ3 are called vertical angles and the angles of measure θ1 and θ4 are supplementary.

Example 3.7. In DRAWING 3.6 at the end of this chapter, find the measures of the angles
θ1, θ2, . . . , θ7. Assume `1 and `2 are parallel.

Solutions. By Proposition 3.6, θ7 = θ5 = θ4 = θ2 = π − π
3 = 2π

3 and θ6 = θ3 = θ1 = π
3 .

Proposition 3.8. In a parallelogram, opposite interior angles are of equal measure and the measures
of adjacent interior angles add up to π.

Proof: This is essentially a corollary of Proposition 3.6. But we would like to exploit the picture of
a parallelogram guaranteed by Corollary 3.4 to give a proof entirely in terms of the vectors ~a,~b from
Corollary 3.4 and DRAWING 2.8(b) at the end of Chapter II that characterize a parallelogram.

Take the picture of a parallelogram guaranteed by Corollary 3.4 (see DRAWING 2.8(b) at the
end of Chapter II), and add on interior angles, of measures θ1, θ2, θ3, θ4, as in DRAWING 3.7 at the
end of this chapter.

In DRAWING 3.7, we wish to show that θ1 = θ3, θ2 = θ4, and θ1 + θ2 = θ2 + θ3 = θ3 + θ4 =
θ4 + θ1 = π.

In DRAWING 3.7, extend the sides vertically and to the right, as in DRAWING 3.8 at the end
of this chapter; note that the angle of measure θ1 appears in numerous places as the measure of the
counterclockwise angle from ~a to ~b, while the angle of measure θ4 appears twice as the clockwise
angle from ~a to −~b.
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In DRAWING 3.8, exploiting vertical angles of measure θ3 and θ1, as in DRAWING 3.4 at the
end of this chapter and Proposition 3.6, we see that θ1 = θ3, θ1 + θ2 = π = θ1 + θ4, from which all
the desired equalities follow. �

Proposition 3.9. The sum of the measures of the interior angles in a triangle is π.

Proof: Represent a triangle with vectors ~a,~b, and ~c, as in DRAWING 3.9 at the end of this chapter,
where we have labeled the measures of the interior angles as θ1, θ2, θ3.

Extend each of the sides, add on a copy of ~a with initial point at the vertex with interior angle
of measure θ3, and observe that θ1 appears as the measure of the counterclockwise angle from ~a to
~b, while θ2, after invoking Proposition 3.6 for a pair of vertical angles, appears as the measure of the
counterclockwise angle from ~c to ~a. See DRAWING 3.10 at the end of this chapter.

At the top of DRAWING 3.10 you will see (reading clockwise) θ1 + θ2 + θ3 = π, as desired. �

Corollary 3.10. For n = 3, 4, 5, . . . , the sum of the interior angles in an n-gon is (n− 2)π.

∼ Proof: This follows from Proposition 3.9 and the fact, that we choose (as mentioned near the
end of Definitions 2.3) to not prove, that any n-gon may be written as the union of (n− 2) triangles
whose interiors do not overlap, with each vertex of each triangle equal to a vertex of the n-gon. �

Definitions 3.11. If `1 is the line segment from A to B, the midpoint of `1 is a point C on `1
such that ‖

−→
AC‖ = ‖

−−→
CB‖. Another line segment or line `2 bisects `1 if `2 intersects `1 at C. See

DRAWINGS 3.11 at the end of this chapter.
The angle between ~a and ~b is bisected by the vector ~c if the measure of the angle between ~a

and ~c equals the measure of the angle between ~c and ~b. See DRAWINGS 3.11.

Definition 3.12. The diagonals of a parallelogram are line segments between nonconsecutive
vertices.

If the parallelogram is formed by vectors ~a and ~b, then the (directed) diagonals are (~a+~b) and
(~b− ~a). See DRAWINGS 3.12 at the end of this chapter.

Proposition 3.13. The diagonals of a parallelogram bisect each other.

Proof: In DRAWING 3.13 at the end of this chapter, let ~a and ~b be as in Corollary 3.4, with the
diagonals (~a+~b) and (~b− ~a) drawn in.

Let P be the intersection of the diagonals. Then (see DRAWING 3.13)

P = I + s(~a+~b) = I + ~a+ t(~b− ~a),
for some real s, t, so that

(s+ t− 1)~a = (t− s)~b;

since ~a and ~b are not parallel (see Definitions 1.5 and 2.3),

(s+ t− 1) = 0 = (t− s),

which implies that s = t = 1
2 , as desired. �

Proposition 3.14. In any triangle, the vectors from vertices to midpoints of opposite sides intersect
at a single point.

Discussion and Proof: Draw an arbitrary triangle with sides represented by vectors ~c1,~c2,~c3,
opposite vertices I1, I2, I3, with

~c1 + ~c2 + ~c3 = ~0,
as drawn in DRAWING 3.14 at the end of this chapter.
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For j = 1, 2, 3, let ~aj be the vector from Ij to the midpoint of the side opposite Ij , as in DRAWING
3.15 at the end of this chapter.

Focus now on the intersection (if it exists), call it P, of ~a1 and ~a2, as in DRAWING 3.16 at the end
of this chapter.

If P exists, we can calculate it, analogous to the proof of Proposition 3.13.

By definition of P, there are real s and t so that

P = I2 + s~a2 and P = I1 + t~a1 = I2 + ~c1 + ~c2 + t~a1. (∗)

Let’s see if we can figure out what s and t are.

We haven’t used the midpoint hypotheses; our hope is to express ~a1 and ~a2, hence (*), in terms
of ~c1 and ~c2.

Because of the midpoint assertions,

~a2 = ~c1 +
1
2
~c2 and ~a1 = −1

2
~c1 − ~c2.

Plug these into (*), to get

s(~c1 +
1
2
~c2) = s~a2 = ~c1 + ~c2 + t~a1 = ~c1 + ~c2 + t(−1

2
~c1 − ~c2)

or
(s− 1 +

t

2
)~c1 = (−1

2
s+ 1− t)~c2;

since ~c1 and ~c2 are not parallel,

(s− 1 +
t

2
) = 0 = (−1

2
s+ 1− t).

The solution of this pair of equations is s = 2
3 = t. In other words, by (*),

P = I1 +
2
3
~a1 = I2 +

2
3
~a2

equals the intersection of the vector from I1 to the midpoint of its opposite side and the vector from
I2 to the midpoint of its opposite side.

All of the above could be done as scratch work, then concealed. For a proof that gives you the
aura of mystical certainty, seemingly pulling surprises out of a hat, begin a formal proof with the
formulas we just calculated:

P1 ≡ I1 +
2
3
~a1, on the line from I1 to the midpoint of ~c1,

P2 ≡ I2 +
2
3
~a2, on the line from I2 to the midpoint of ~c2.

We will show that P1 = P2. Begin with the midpoint assertions implying that

~a2 = ~c1 +
1
2
~c2 and ~a1 = −1

2
~c1 − ~c2.

Thus we can rewrite

P1 = I1+
2
3

(
−1

2
~c1 − ~c2

)
= I1−

1
3
~c1−

2
3
~c2 = I2+(~c1+~c2)−

1
3
~c1−

2
3
~c2 = I2+

2
3
~c1+

1
3
~c2 = I2+

2
3

(
~c1 +

1
2
~c2

)
= P2.

This shows that P2 = P1 is the intersection of the vector from I1 to the midpoint of its opposite
side and the vector from I2 to the midpoint of its opposite side.

By a similar argument,

P3 ≡ I3 +
2
3
~a3 = I2 +

2
3
~a2 ≡ P2;
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that is, the intersection of the vector from I3 to the midpoint of its opposite side and the vector
from I2 to the midpoint of its opposite side also equals P.

Thus P ≡ P1 = P2 = P3 is a common intersection for all three vectors from vertices to midpoints
of opposite sides. �

Notice that we have actually proved more, namely the following.

Proposition 3.15. The common intersection point of Proposition 3.14 is, for each vertex, two-thirds
of the way from the vertex to the midpoint of the opposite side.

Examples 3.16. In each of the drawings in DRAWINGS 3.17 at the end of this chapter, use the
results of this chapter to fill in any lengths of sides or measures of angles, whenever possible. Do
not assume anything is drawn to scale. All quadrilaterals are parallelograms.

Solutions. See DRAWINGS 3.18 at the end of this chapter. (a) Propositions 3.3 and 3.8. (b)
Proposition 3.15. (c) Proposition 3.13. (d) Proposition 3.3. (e) Proposition 3.9. (f) Proposition
3.13. (g) Proposition 3.8.
(i) Proposition 3.6.

Examples 3.17. In each of the drawings in DRAWINGS 3.19 at the end of this chapter, find x.
All quadrilaterals are parallelograms.

Solutions. (a) By Proposition 3.3, (2x+ 5) = (5x− 10), so x = 5.

(b) By Proposition 3.6, 180 = (3x+ 20) + (2x− 90), so x = 50 (degrees).

(c) By Proposition 3.8, 180 = (6x+ 10) + (x+ 50), so x = 120
7 .

(d) By Proposition 3.8, (x+ 50) = (6x+ 10), so x = 8.

(e) By Proposition 3.9, 180 = 60 + (2x+ 10) + 3x, so x = 22.

(f) By Proposition 3.13, (x+ 7) = (3x+ 5), so x = 1.
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HOMEWORK

HWIII.1. In each of the drawings in DRAWINGS 3.20 at the end of this chapter, use the results
of this chapter to fill in lengths and angles, where possible. All quadrilaterals are parallelograms.

HWIII.2. Prove that, in the drawing of a diagonal of a parallelogram in DRAWING 3.21 at the
end of this chapter, θ1 = θ4 and θ2 = θ3.

HWIII.3. In a quadrilateral, draw line segments between midpoints of consecutive sides. Show that
the new quadrilateral that is formed is a parallelogram. Use vector methods. HINT: DRAWING
3.22 at the end of this chapter and Proposition 3.5.

HWIII.4. Show that, in any triangle, the line segment between the midpoints of two sides is parallel
to the remaining side, with length half the length of the remaining side. Use vector methods. See
DRAWING 3.23 at the end of this chapter for a hint; see also Example 14.19 for a generalization.
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HOMEWORK ANSWERS

HWIII.1. See DRAWINGS 3.24 at the end of this chapter.

HWIII.2. Proposition 3.6.

HWIII.3. In DRAWING 3.22,

~e =
1
2
~d+

1
2
~a and ~f =

1
2
~b+

1
2
~c,

thus
~0 =

1
2

(
~a+~b+ ~c+ ~d

)
= ~e+ ~f,

so that ~e = −~f, so that Proposition 3.5 implies we have a parallelogram.

HWIII.4. In DRAWING 3.23,

~d =
1
2
~c+ ~a+

1
2
~b =

1
2

(
~a+~b+ ~c

)
+

1
2
~a =

1
2
~a,

so that ~a = 2~d.
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CHAPTER IV: Dot Product and Orthogonality.

The idea of being perpendicular or orthogonal arises in numerous places. It describes the most
comfortable relationship of our body, when standing, to the ground. If our feet are being burned
by sand on a beach, the fastest route to the cooling ocean is perpendicular to the shoreline. See
DRAWING 4.1 at the end of this chapter.

We would like an algebraic characterization of being perpendicular. Motivation comes from
considering the Pythagorean theorem (see Proposition 4.15 and DRAWING 4.2 at the end of this
chapter).

For any vectors
~a ≡< a1, a2 >, ~b ≡< b1, b2 >,

make the following calculation:

‖~a+~b‖2 = ‖ < a1 + b1, a2 + b2 > ‖2 = (a1 + b1)2 + (a2 + b2)2 = (a2
1 + 2a1b1 + b21) + (a2

2 + 2a2b2 + b22)

= (a2
1 + a2

2) + (b21 + b22) + 2(a1b1 + a2b2) ≡ ‖~a‖2 + ‖~b‖2 + 2(a1b1 + a2b2).

Note that the Pythagorean theorem (see Proposition 4.15 and Definition 4.3) holds precisely
when that last quantity (a1b1 + a2b2) is zero. This motivates the following definition.

Definition 4.1. If ~a and ~b are two vectors, their dot or inner product is

~a ·~b ≡ (a1b1 + a2b2).

Example 4.2. < 1,−2 > · < 2, 3 >= 2− 6 = −4.

The Pythagorean theorem and our calculations above (see also Corollary 2.14(c) and Remarks
2.15) motivate the following definition.

Definitions 4.3. Two vectors ~a and ~b are said to be orthogonal or perpendicular if their dot
product is zero. This will be denoted ~a ⊥ ~b.

Two lines are perpendicular if their direction vectors are perpendicular (Definitions 2.1).

Example 4.4. Are the vectors < 1, 2 > and < 3,−2 > orthogonal? This is a geometric question,
so we feel that we should be able to answer by drawing a picture, as in DRAWING 4.3 at the end
of this chapter.

The vectors look perpendicular, I think. I hate to rely on anything related to my art ability or
sharpness of vision.

But we don’t need a picture, because of Definition 4.3. Calculate the dot product of the two
vectors

< 1, 2 > · < 3,−2 >= 3− 4 = −1;
all we care about is that their dot product is not zero, therefore the vectors are not perpendicular.

As in Chapter I, we have the interaction of algebra and geometry. We get the best of both
worlds: the precision of algebra and the intuition of geometry.

We leave the calculations for the following properties to the reader.

Some Properties 4.5. Suppose ~a,~b, and ~c are vectors and α is a real number.
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(a) ~a · (~b+ ~c) = (~a ·~b) + (~a · ~c).

(b) ~a · (α~b) = α(~a ·~b).

(c) ~a ·~b = ~b · ~a.

(d) ‖~a+~b‖2 = ‖~a‖2 + ‖~b‖2 + 2(~a ·~b).
(e) ~a · ~a = ‖~a‖2.

For the remainder of this section, let ~b be a nontrivial (that is, not equal to ~0) vector, let ~a be
a vector or point (see 1.16), and let ` be a line with direction vector ~b (see Definitions 2.1).

We would like a best approximation of ~a from `; that is, a point on ` that is closest to ~a.
Intuitively, this means dropping a perpendicular from ~a onto ` (see DRAWING 4.4 at the end of
this chapter; as at the beginning of this section, think of ` as the shoreline, ~a as where you stand on
the beach).

Definition 4.6. The orthogonal projection of ~a onto `, denoted proj`(~a), is a point on ` such
that

(~a− proj`(~a)) ⊥ ~b.
See DRAWING 4.4 at the end of this chapter.

Note that, if ~a is on the line `, then the projection of ~a onto ` is ~a itself: if you’re already laid
out on the ground, dropping to the ground, as in “drop and give me twenty,” means you stay where
you are.

The orthogonal projection of ~a onto ~b, denoted proj~b(~a), is the projection of ~a onto the line
through ~0 and ~b; that is, proj~b(~a) is a multiple of ~b such that(

~a− proj~b(~a)
)
⊥ ~b.

See DRAWING 4.4 at the end of this chapter.

We are premature in our use of the article “the”; we must verify that, if the orthogonal projection
exists, it is unique.

Proposition 4.7 (uniqueness of orthogonal projection) Suppose ~x1 and ~x2 both satisfy Defi-
nition 4.6; that is, they are both points on ` such that

(~a− ~xj) ⊥ ~b, j = 1, 2.

Then ~x1 = ~x2.

Proof: Note that (~x1 − ~x2) is a multiple of ~b, thus is orthogonal to (~a − ~x1) and (~a − ~x2), by
Properties 4.5(b). This (see Definition 4.3 and Properties 4.5(d)) and the facts that

(~a− ~x1) = (~a− ~x2) + (~x2 − ~x1), (~a− ~x2) = (~a− ~x1) + (~x1 − ~x2),

imply

‖~a−~x2‖2 = ‖~a−~x1‖2 +‖~x1−~x2‖2 = ‖~a−~x2‖2 +‖~x2−~x1‖2 +‖~x1−~x2‖2 = ‖~a−~x2‖2 +2‖~x1−~x2‖2,
so that

‖~x1 − ~x2‖ = 0,
which implies that ~x1 = ~x2, as desired. �

At this point, we do not know that this projection exists (see Theorem 4.11). But if it does, it
has a desirable property: it gives us the best approximation of ~a by points in ` (see Corollary 4.10
and DRAWING 4.4 at the end of this chapter).
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Theorem 4.8. For any point ~y on `,

‖~a− ~y‖2 = ‖(~a− proj`(~a))‖2 + ‖(proj`(~a)− ~y)‖2.

Proof: Since (proj`(~a)− ~y) is a multiple of ~b,

‖~a− ~y‖2 = ‖(~a− proj`(~a)) + (proj`(~a)− ~y)‖2 = ‖(~a− proj`(~a))‖2 + ‖(proj`(~a)− ~y)‖2,

by 4.5(d), since (~a− proj`(~a)) is orthogonal to all multiples of ~b, by Properties 4.5(b). �

Corollary 4.9. ‖~a‖2 = ‖a− proj`(~a)‖2 + ‖proj`(~a)‖2.

Corollary 4.10. proj`(~a) minimizes the distance from ~a to points on the line `; that is,

‖~a− ~y‖ ≥ ‖~a− proj`(~a)‖,
for any ~y in `.

Proof: This follows from Theorem 4.8, since norm is always nonnegative. �

Using dot product, it is not hard to get an algebraic formula for proj`(~a). Note first that, for
any ~x0 in `, proj`(~a) = ~x0 + t0~b, for some number t0 (depending on ~x0). The desired orthogonality
implies that

0 = (~a− (~x0 + t0~b)) ·~b = ~a ·~b− ~x0 ·~b− t0~b ·~b = (~a− ~x0) ·~b− t0(~b ·~b);
we may solve for t0:

t0 =
(~a− ~x0) ·~b

~b ·~b
=

(~a− ~x0) ·~b
‖~b‖2

,

so that Definition 4.6 is brought to life.

Theorem 4.11. The orthogonal projection proj`(~a) exists and, for any ~x0 in `, direction vector ~b
for `, equals [

~x0 +

(
(~a− ~x0) ·~b

‖~b‖2

)
~b

]
.

Proof: As in deriving the formula for the projection, look at(
~a−

[
~x0 +

(
(~a− ~x0) ·~b

‖~b‖2

)
~b

])
·~b = (~a−~x0)·~b−

(
(~a− ~x0) ·~b

‖~b‖2

)
(~b·~b) = (~a−~x0)·~b−

(
(~a− ~x0) ·~b

‖~b‖2

)
‖~b‖2 = 0.

�

Corollary 4.12. The orthogonal projection proj~b(~a) exists and equals
(
~a·~b
‖~b‖2

)
~b.

Examples 4.13. (a) Get the orthogonal projection of < −1,−2 > onto < 2,−3 > .

(b) Get the orthogonal projection of (−1, 2) onto the line through (2, 1) and (5, 2).

Solutions. (a) This is Corollary 4.12, with ~a ≡< −1,−2 > and ~b ≡< 2,−3 >, thus we want

proj<2,−3>(< −1,−2 >) =
(
< −1,−2 > · < 2,−3 >

‖ < 2,−3 > ‖2

)
< 2,−3 >=

(
−2 + 6
4 + 9

)
< 2,−3 >=

4
13

< 2,−3 > .

See DRAWING 4.5(a) at the end of this chapter.

(b) In the language of Definition 4.6, ~a = (−1, 2) (or < −1, 2 >; see 1.16) and ` is the line through
(2, 1) and (5, 2). To exploit Theorem 4.11, we need a direction vector ~b; let’s choose

~b ≡
−−−−−−−→
(2, 1)(5, 2) =< 3, 1 > .



102

Finally, we need a point on the line; we could use

~x0 ≡ (2, 1).

Theorem 4.11 now gives us

proj`(−1, 2) =
[
(2, 1) +

(
(< −1, 2 > − < 2, 1 >)· < 3, 1 >

‖ < 3, 1 > ‖2

)
< 3, 1 >

]
=
[
(2, 1) +

(
(< −3, 1 >)· < 3, 1 >

10

)
< 3, 1 >

]
=
[
(2, 1) +

(
(−8)
10

)
< 3, 1 >

]
=

1
10

[(20, 10)− < 24, 8 >] =
1
10

(−4, 2).

What if we had chosen ~x0 = (5, 2) instead of (2, 1)? Let’s run through the same calculations; it
will be disturbing if we get a different answer:

proj`(−1, 2) =
[
(5, 2) +

(
(< −1, 2 > − < 5, 2 >)· < 3, 1 >

‖ < 3, 1 > ‖2

)
< 3, 1 >

]
=
[
(5, 2) +

(
(< −6, 0 >)· < 3, 1 >

10

)
< 3, 1 >

]
=
[
(5, 2) +

(
(−18)

10

)
< 3, 1 >

]
=

1
10

[(50, 20)− < 54, 18 >] =
1
10

(−4, 2),

exactly what we got when we used ~x0 = (2, 1).
In general, Theorem 4.11 guarantees that we will get the same result (namely, the unique

projection onto the line) regardless of which point ~x0 we choose on the line.

Let’s check directly that our alleged projection 1
10 (−4, 2) satisfies Definition 4.6:(

< −1, 2 > − 1
10

< −4, 2 >
)
· < 3, 1 >=

1
10

(< −10, 20 > − < −4, 2 >) · < 3, 1 >=
1
10

(< −6, 18 >) · < 3, 1 >= 0,

so that (
< −1, 2 > − 1

10
< −4, 2 >

)
⊥ < 3, 1 >,

as demanded by Definition 4.6. See DRAWING 4.5(b) at the end of this chapter.

Let’s reformulate the dot product in terms of complex numbers. See 1.15 and 2.8 for the polar
form of a complex number, and 1.16 for the equating of vector with complex number. Explicitly, if
~a ≡< x1, y1 > is a vector, then “~a = reiθ” means that reiθ is the polar form of the complex number
x1 + iy1.

Proposition 4.14. Suppose x1, x2, y1, y2, θ1, θ2 are real numbers, r1 and r2 are positive nummbers,

z1 = x1 + iy1 = r1e
iθ1 and z2 = x2 + iy2 = r2e

iθ2 .

Then
< x1, y1 > · < x2, y2 >= Re(z1z2) = Re(r1r2ei(θ1−θ2)).

Proof:
z1z2 = (x1 + iy1)(x2 − iy2) = (x1x2 + y1y2) + i(y1x2 − x1y2);

also,
z1z2 = r1e

iθ1r2eiθ2 = (r1r2ei(θ1−θ2)),
by Theorem 1.12. �

We have not identified the measure of the angle between orthogonal vectors, or even shown that
it is unique. Corollary 2.14(c) asserts that the counterclockwise angle from < x1, y1 > to < −y1, x1 >
is π

2 . Since < x1, y1 > · < −y1, x1 >= 0 (that is, < x1, y1 > and < −y1, x1 > are orthogonal), π
2 is

looking like a viable candidate for the measure of the angle between orthogonal vectors.

Proposition 4.15. Suppose ~a and ~b are two nontrivial vectors. Then the following are equivalent.

(a) ~a and ~b are orthogonal.
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(b) (Pythagorean theorem) ‖~a+~b‖2 = ‖~a‖2 + ‖~b‖2.

(c) ‖~a+ s~b‖ ≥ ‖~a‖ for all real s.

(d) The measure of the angle between ~a and ~b is π
2 .

Proof: The equivalence of (a) and (b) follows from 4.5(d) (see Definition 4.3).

(a) ⇐⇒ (d). As we discussed before the proof of Proposition 4.14, denote ~a = r1e
iθ1 ,~b = r2e

iθ2 ,
with 0 ≤ θ1 ≤ θ2 ≤ θ1 + 2π, r1 > 0, r2 > 0. By Definition 4.3 and Proposition 4.14,

(a) ⇐⇒ ~b · ~a = 0 ⇐⇒ Re
(
r2r1e

i(θ2−θ1)
)

= 0 ⇐⇒ (θ2 − θ1) =
π

2
or

3π
2
,

which is equivalent to (d), since the counterclockwise measure from ~a to ~b is (θ2−θ1) (see Definitions
2.10).

Regarding the equivalence of (a) and (c), define a function F : R → R by

F (s) ≡ ‖~a+ s~b‖2 − ‖~a‖2.
Assertion (c) is equivalent to F (s) ≥ 0 for all real s.

Apply 4.5(d), and complete the square:

F (s) = s2‖~b‖2+2s(~a·~b) = ‖~b‖2
s2 + 2s

(
a ·~b
‖~b‖2

)
+

(
~a ·~b
‖~b‖2

)2

−

(
~a ·~b
‖~b‖2

)2
 = ‖~b‖2

(
s+

~a ·~b
‖~b‖2

)2

−

(
~a ·~b
‖~b‖

)2

Assertion (a) implies that F (s) = s2‖~b‖2 ≥ 0, which gives us (c). If (a) is not true, then

F

(
− ~a ·

~b

‖~b‖2

)
= −

(
~a ·~b
‖~b‖

)2

< 0,

so that (c) does not hold. This shows the equivalence of (a) and (c). �

Remark 4.16. The Pythagorean theorem is ultimately a consequence of our definition of norm
(Definitions 2.4(i)). For example, if we chose the norm

‖ < x, y > ‖ ≡ |x|+ |y|,
it can be shown that there is no dot product with the properties of 4.5, so that defining orthogonal
vectors is problematic.

Examples 4.17. Which of the following pairs of vectors are orthogonal?

(a) {< 1, 2 >,< −2, 1 >}.
(b) {< 4,−2 >,< −2, 1 >}.
(c) {< 1, 2 >,< 3, 4 >}.
(d) {< 5, 17 >,< 0, 0 >}.

Solutions. The pairs in (a) and (d) are orthogonal, since their dot products are zero. The other
pairs are not orthogonal, since their dot products are not zero. Notice that the pair in (c) is neither
orthogonal nor parallel (see Examples 1.17).

As in Examples 1.17(d), many people are uncomfortable with < 0, 0 > being orthogonal to
anything, since it implies that < 0, 0 > has a direction.

Since this chapter has been devoted to the geometric idea of orthogonality (being perpendicular),
we cannot resist finishing with a believable relationship between perpendicular lines and parallel lines
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(Corollary 4.20; see Proposition 4.18 for a special case), since parallel may be considered a sort of
opposite of perpendicular.

See Theorem 5.2 for a more complete list of relationships between parallel and perpendicular.
Notice that the proof of the very geometric result in Proposition 4.18 is entirely algebraic; more

explicitly, it relies on our dot product characterization of orthogonality (Definition 4.3) and our
algebraic definition of parallel (Definitions 1.5).

Proposition 4.18. If ~a,~b, and ~c are vectors, with ~c nontrivial, ~a ⊥ ~c and ~b ⊥ ~c, then ~a and ~b are
parallel.

Proof: Denote
~a ≡< a1, a2 >, ~b ≡< b1, b2 >, ~c ≡< c1, c2 > .

First suppose neither c1 nor c2 equals zero. Then

0 = ~a · ~c = a1c1 + a2c2

implies that

(∗) a1 =
−a2c2
c1

.

Identically, 0 = ~b · ~c implies that

(∗∗) b1 =
−b2c2
c1

.

If either ~a or ~b is the trivial vector ~0, then ~a and ~b are trivially parallel.
If neither ~a nor ~b is the trivial vector, then (*) implies that both a1 and a2 are nonzero, while

(**) implies that both b1 and b2 are nontrivial. Then, again by (*) and (**),

γ ≡ a1

b1
=

(
−a2c2
c1

)
(
−b2c2
c1

) =
a2

b2
,

so that
~a = γ~b;

that is, ~a and ~b are parallel.
We leave it to the reader to finish this proof by showing

(1) c1 = 0 → ~a =< a1, 0 > and ~b =< b1, 0 >

and
(2) c2 = 0 → ~a =< 0, a2 > and ~b =< 0, b2 >;

in either (1) or (2), ~a and ~b are parallel. �

Remark 4.19. We could also prove Proposition 4.18 “by contradiction” (see Appendix 0); that is,
by hypothesizing that ~a and ~b are not parallel. Denoting by `c a line with direction vector ~c, by `a a
line with direction vector ~a that intersects `c, and by `b a line with direction vector ~b that intersects
`c at a different point than `a, as drawn in DRAWING 4.6 at the end of this chapter, we see that
the shaded triangle would then violate Proposition 3.9.

Corollary 4.20 (same as Corollary 5.3). Suppose `1, `2, `3, `4 are lines, `1 and `2 are parallel,
and both `3 and `4 are perpendicular to `2 (see DRAWING 5.4 at the end of Chapter V). Then both
`3 and `4 are perpendicular to `1, `3 is parallel to `4, the line segments from `1 to `2 are of equal
length, and the line segments from `3 to `4 are of equal length. See DRAWING 4.7 at the end of
this chapter.
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Proof: Denote by A the intersection of `3 with `2, by B the intersection of `4 with `2, by C the
intersection of `4 with `1, and by D the intersection of `3 with `1, as in DRAWING 4.7 at the end
of this chapter. Proposition 4.18 implies that `3 is parallel to `4. Thus the quadrilateral ABCD is a
parallelogram. Proposition 3.3 now implies that ‖

−−→
AB‖ = ‖

−−→
DC‖ and ‖

−−→
AD‖ = ‖

−−→
BC‖. �

See Corollary 5.3 for a different proof (using Theorem 5.2). Note that Proposition 4.18 is the
special case of Corollary 4.20 when `1 = `2.
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HOMEWORK

HWIV.1. Get < 2,−3 > · < −4, 1 > .

HWIV.2. Which of the following pairs of vectors are orthogonal?

(a) < 1,−3 >,< 3,−9 > .

(b) < 1,−3 >,< −3, 9 > .

(c) < 1,−3 >,< 0, 0 > .

(d) < 1,−3 >,< 6, 2 > .

HWIV.3. (a) Find the orthogonal projection of < 3, 4 > onto < 1, 0 > .

(b) Find the orthogonal projection of < 3, 4 > onto < 0, 1 > .

(c) Find the orthogonal projection of < 1, 0 > onto < 3, 4 > .

(d) Find the orthogonal projection of < 0, 1 > onto < 3, 4 > .

(e) Find the orthogonal projection of < 1, 2 > onto < 3, 4 > . How is this related to (c) and (d)?

HWIV.4. Find the orthogonal projection of (3, 1) onto the line y = 2x+ 5.

HWIV.5. Find the orthogonal projection of (1,−1) onto the line (expressed parametrically) P =
(2, 1) + t < −1, 2 > .

HWIV.6. For arbitrary real numbers a, b, c, d, e, get the orthogonal projection of (d, e) onto

ax+ by = c

in terms of a, b, c, d, e.

HWIV.7. Suppose a line ` has slope m. Use dot product and a convenient direction vector for `
(HWII.1 and HWII.2) to get the slope of any line orthogonal to `.

HWIV.8. If ~a and ~b are both parallel and orthogonal, what can be said about ~a and ~b? Prove your
assertion.

HWIV.9. For what real number α is < 1, α >⊥< 2,−3 >?

HWIV.10. Find a real number s so that

‖ < 1, 2 > +s < −1, 1 > ‖ < ‖ < 1, 2 > ‖.
It can be shown that such an smust exist, because < 1, 2 > and < −1, 1 > are not perpendicular.

Stated more positively, it can be shown that two vectors ~a and ~b are orthogonal if and only if
‖~a+ s~b‖ ≥ ‖~a‖, for any real s.

HWIV.11. Show that, for any vectors ~a,~b, ‖~a+~b‖ = ‖~a−~b‖ ⇐⇒ ~a ⊥ ~b.

HWIV.12. Show that, for any vectors ~a,~b, (~a+~b) ⊥ (~a−~b) ⇐⇒ ‖~a‖ = ‖~b‖.
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HOMEWORK ANSWERS

HWIV.1. 2(−4) + (−3)(1) = −11.

HWIV.2. Each of the pairs in (c) and (d) are orthogonal, because of having zero dot product.
Each of the pairs in (a) and (b) fail to be orthogonal, because of having nonzero dot product.

HWIV.3. (a) < 3, 4 > · < 1, 0 >= 3, ‖ < 1, 0 > ‖ = 1, thus our projection is 3
12 < 1, 0 >=< 3, 0 > .

(b) As in (a), our projection is < 0, 4 > .

(c) < 1, 0 > · < 3, 4 >= 3, ‖ < 3, 4 > ‖ = 5, thus our projection is 3
52 < 3, 4 >= 3

25 < 3, 4 > .

(d) As in (c), our projection is 4
25 < 3, 4 > .

(e) < 1, 2 > · < 3, 4 >= 11, ‖ < 3, 4 > ‖ still equals 5, so now we want 11
25 < 3, 4 > .

This is
[(answer to (c))× 1] + [(answer to (d))× 2] .

Note that
< 1, 2 >= [< 1, 0 > ×1] + [< 0, 1 > ×2] .

HWIV.4. Using Theorem 4.11, ~x0 = (0, 5),~b =< 1, 2 >, gives us (−1, 3).

HWIV.5. Using Theorem 4.11, ~x0 = (2, 1),~b =< −1, 2 >, gives us 1
5 (13,−1).

HWIV.6. Using Theorem 4.11, with ~x0 = (0, cb ) and ~b =< b,−a >, gives us

(0,
c

b
) +

[
db+ (e− c

b )(−a)
]

(b2 + a2)
< b,−a > .

HWIV.7. First assume m is finite and nonzero.

From HWII.1, use < 1,m > as a direction vector for `. Suppose `0 is a line orthogonal to `.
Denote by m0 its slope.

If m0 were infinite, then the allegedly orthogonal line would have direction vector < 0, 1 >,
whose dot product with < 1,m > is m, assumed to be nonzero. Thus m0 is finite, so that it has a
direction vector < 1,m0 > . Since the direction vectors of the orthogonal lines are orthogonal,

0 =< 1,m > · < 1,m0 >= 1 +mm0,

so that m0 = − 1
m .

If m is infinite, then ` has direction vector < 0, 1 >, so that direction vectors for a line orthogonal
to ` have the form < s, 0 >, for any real s. This implies that the slope of any orthogonal line is 0.

If m = 0, then ` has direction vector < 1, 0 >, clearly orthogonal to < 0, 1 >, a direction vector
for a vertical line. Thus a line orthogonal to ` now has infinite slope.

HWIV.8. Denote ~a =< a1, a2 >,~b =< b1, b2 >, with a1, a2, b1, b2 real numbers. Assume, at least
for the sake of contradiction, as in proof by contradiction (see Appendix 0), neither ~a nor ~b are ~0;
that is, ~a and ~b are nontrivial.

Since ~a and ~b are parallel and nontrivial, there’s real nonzero s so that

< a1, a2 >= ~a = s~b =< sb1, sb2 >, so that a1 = sb1 and a2 = sb2.

Since ~a and ~b are orthogonal, we now have

0 = ~a ·~b = a1b1 + a2b2 = sb21 + sb22 = s(b21 + b22),

so that (b21 + b22) = 0, which implies that b1 = b2 = 0; that is, ~b is trivial. Since ~a = s~b, ~a is also
trivial.

We conclude that either ~a or ~b must be ~0.
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HWIV.9. 0 =< 1, α > · < 2,−3 >= 2− 3α, thus α = 2
3 .

Compare to HWII.8.

HWIV.10. Let’s calculate:

‖ < 1, 2 > +s < −1, 1 > ‖ < ‖ < 1, 2 > ‖ ⇐⇒ ‖ < 1−s, 2+s > ‖2 < ‖ < 1, 2 > ‖2 ⇐⇒ (1−s)2+(2+s)2 < 5

⇐⇒ (1− 2s+ s2) + (4 + 4s+ s2) < 5 ⇐⇒ 2s2 + 2s+ 5 < 5 ⇐⇒ 2s2 + 2s < 0 ⇐⇒ s(s+ 1) < 0.

We need s < 0 and (s+ 1) > 0; for example, s = − 1
2 will do what we want.

HWIV.11. By 4.5(d),

‖~a+~b‖ = ‖~a−~b‖ ⇐⇒ ‖~a+~b‖2 = ‖~a−~b‖2 ⇐⇒ ‖~a‖2+‖~b‖2+2(~a·~b) = ‖~a‖2+‖~b‖2−2(~a·~b) ⇐⇒ ~a·~b = 0 ⇐⇒ ~a ⊥ ~b.

HWIV.12.

(~a+~b) ⊥ (~a−~b) ⇐⇒ (~a+~b)·(~a−~b) = 0 ⇐⇒ (~a·~a)−(~a·~b)+(~b·~a)−(~b·~b) = 0 ⇐⇒ (~a·~a)−(~b·~b) = 0

⇐⇒ ‖~a‖2 − ‖~b‖2 = 0 ⇐⇒ ‖~a‖ = ‖~b‖.
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CHAPTER V: Some Perpendicular Geometry.

This section will present some geometric consequences of the concept of being orthogonal or
perpendicular (see Definition 4.3).

Recall the dot product, Definition 4.1.

Here are the key dot product factoids for this chapter, for any vectors ~a,~b:

‖~a‖2 = ~a · ~a and ~a ⊥ ~b ⇐⇒ ~a ·~b = 0.

Definition 5.1. The distance from a point ~x to a line `, denoted d(~x, `), is the minimum distance
from ~x to points on ` :

d(~x, `) ≡ minimum {‖~x− ~y‖ | ~y is in `}.

By Corollary 4.10,
d(~x, `) = ‖~x− proj`(~x)‖;

see Definition 4.6 and DRAWING 5.1 at the end of this chapter.

In terms of distance from a point to a line, we may further characterize being parallel (see
Theorem 3.1).

To those not familiar with the extent to which math grows back on itself, it might seem strange
or even ironic to characterize being parallel in terms of an idea equivalent to orthogonality, a sort
of opposite to being parallel.

See Proposition 4.15 for characterizations of orthogonality. See Proposition 4.18 for a preliminary
result in the spirit of Theorem 5.2.

Theorem 5.2. Suppose `1 and `2 are two different lines. Then the following are equivalent.

(a) `1 and `2 are parallel.

(b) d(~x, `2) is constant, for ~x in `1.

(c)
(
~x− proj`2(~x)

)
is constant, that is, equals the same vector, for ~x in `1. See DRAWING 5.2 at

the end of this chapter.

(d) A line is perpendicular to `1 if and only if it is perpendicular to `2.

(e) There are two (different) points ~x and ~y in `1 such that d(~x, `2) = d(~y, `2).

Proof: (a) → (c). Fix ~x and ~y in `1.
Since

(
~x− proj`2(~x)

)
and

(
~y − proj`2(~y)

)
are both orthogonal to `2, Proposition 4.18 implies

they are parallel. Thus the quadrilateral with vertices ~x, ~y, proj`2(~x), and proj`2(~y) (see DRAWING
5.3(a) at the end of this chapter) is a parallelogram.

Proposition 3.3 now implies that the vectors
(
~x− proj`2(~x)

)
and

(
~y − proj`2(~y)

)
are equal. Since

~x and ~y are arbitrary, this proves (c).

(c) → (b) follows from (see comment after Definition 5.1) d(~x, `) = ‖~x − proj`(~x)‖, for any line `,
point ~x.

(b) → (e) is clear.

(e) → (a). Consider the quadrilateral with vertices ~x, ~y,proj`2(~x),proj`2(~y) (see DRAWING 5.3(b)
at the end of this chapter). Since

(
~x− proj`2(~x)

)
and

(
~y − proj`2(~y)

)
are both orthogonal to `2,

Proposition 4.18 implies that they are parallel. By hypothesis,

‖
(
~x− proj`2(~x)

)
‖ = d(~x, `2) = d(~y, `2) = ‖

(
~y − proj`2(~y)

)
‖,
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thus Proposition 3.5 implies that our quadrilaterial is a parallelogram; in particular, `1 is parallel to
`2.

(a) → (d). Suppose a line `3 is perpendicular to `1 (see DRAWING 5.3(c) at the end of this chapter).
Proposition 3.6 (`3 is called a transversal there) implies that `3 is perpendicular to `2.

The same argument shows that

(`3 ⊥ `2) → (`3 ⊥ `1).

(d) → (a). Fix ~x in `1 and let `3 be the line through ~x and (proj`2(~x)) (see DRAWING 5.3(d) at
the end of this chapter).

By the definition of projection, `3 is perpendicular to `2. By (d), `3 is also perpendicular to `1
(see DRAWING 5.3(e) at the end of this chapter).

By Proposition 4.18, `1 and `2 are parallel. �

Corollary 5.3 (same as Corollary 4.20). Suppose `1, `2, `3, `4 are lines, `1 and `2 are parallel,
and both `3 and `4 are perpendicular to `2 (see DRAWING 5.4(a) at the end of this chapter). Then
both `3 and `4 are perpendicular to `1, `3 is parallel to `4, the line segments from `1 to `2 are of
equal length, and the line segments from `3 to `4 are of equal length. See DRAWING 5.4(b) at the
end of this chapter.

Proof: The orthogonality conclusions follow from Theorem 5.2(a) ⇐⇒ (d). Proposition 4.18
implies that `3 and `4 are parallel. Theorem 5.2(a) ⇐⇒ (c) implies that the indicated line
segments (see DRAWING 5.4(b) at the end of this chapter) are of equal length. �

See Corollary 4.20 for a different proof.

The next three results involve diagonals in a parallelogram. We have already observed (Corollary
3.4 and DRAWING 2.8(b) at the end of Chapter II) that any parallelogram is formed by two vectors,
call them ~a,~b; in DRAWING 5.5 at the end of this chapter we have included diagonals (~a+~b) and
(~a−~b).

Propositions 5.5 and 5.6 present an interesting duality between length and orthogonality: per-
pendicular diagonals correspond to sides of equal length (Proposition 5.5), while perpendicular sides
correspond to diagonals of equal length (Proposition 5.6).

Definitions 5.4. A rhombus is a parallelogram whose sides all have equal length. A rectangle is
a parallelogram formed by orthogonal vectors ~a,~b, as in Corollary 3.4 with ~a ⊥ ~b. A square is both
a rectangle and a rhombus.

Proposition 5.5. In any parallelogram, the diagonals are perpendicular if and only if the parallel-
ogram is a rhombus.

Proof: By Properties 4.5, after cancellation,

(~a+~b) · (~a−~b) = ‖~a‖2 − ‖~b‖2,
thus

(~a+~b) · (~a−~b) = 0 ⇐⇒ ‖~a‖ = ‖~b‖.
Since the diagonals are (~a+~b) and (~a−~b), and the lengths of the sides are ‖~a‖ and ‖~b‖ (see DRAWING
5.5 at the end of this chapter), the result follows from Definition 4.3. �

Proposition 5.6. In a parallelogram, the diagonals are of equal length if and only if the parallelo-
gram is a rectangle.
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Proof: See DRAWING 5.5 at the end of this chapter. By 4.5(d),

‖~a+~b‖ = ‖~a−~b‖ ⇐⇒ ‖~a+~b‖2 = ‖~a−~b‖2 ⇐⇒ ‖~a‖2+‖~b‖2+2(~a·~b) = ‖~a‖2+‖~b‖2−2(~a·~b) ⇐⇒ ~a·~b = 0,

thus the result follows from Definition 4.3. �

Proposition 5.7. In a parallelogram, the sum of the squares of the lengths of the sides equals the
sum of the squares of the lengths of the diagonals.

Proof: See DRAWING 5.5 at the end of this chapter. By 4.5(d),

‖~a+~b‖2 + ‖~a−~b‖2 =
(
‖~a‖2 + ‖~b‖2 + 2(~a ·~b)

)
+
(
‖~a‖2 + ‖~b‖2 − 2(~a ·~b)

)
= 2

(
‖~a‖2 + ‖~b‖2

)
.

�

Definition 5.8. A line or line segment `2 is a perpendicular bisector of the line segment `1 from
A to B if `2 bisects `1 at the midpoint C (see Definitions 3.11) and `2 is orthogonal to `1.

It is not hard to construct (hence show that it always exists) the perpendicular bisector `2.
Writing the coordinates of the directed line segment

−−→
AB =< v1, v2 >, the line `2 is all points of the

form
P = A+

1
2
< v1, v2 > +t < −v2, v1 > (t real).

See DRAWING 5.6 at the end of this chapter.

Definition 5.9. A triangle is isosceles if two sides are of equal length.

The following theorem relates being isosceles to the presence of a particular perpendicular bi-
sector, from the vertex where the sides of equal length meet, to the side opposite said vertex.

Theorem 5.10. Let P,Q,R be the three vertices of a triangle. Then the following are equivalent.

(a) ‖
−→
PR‖ = ‖

−−→
QR‖.

(b) The line segment between the vertex R and the midpoint of the opposite side
−−→
PQ is orthogonal

to
−−→
PQ.

(c) The orthogonal projection of the vertex R onto the opposite side
−−→
PQ is the midpoint of

−−→
PQ.

Proof: See DRAWING 5.7 at the end of this chapter. Let S ≡ proj−−→
PQ

(R). By the Pythagorean
theorem (Proposition 4.15) applied twice,

‖
−→
PR‖2 − ‖

−→
PS‖2 = ‖

−→
SR‖2 = ‖

−−→
QR‖2 − ‖

−→
SQ‖2,

so that
‖
−→
PR‖ = ‖

−−→
QR‖ ⇐⇒ ‖

−→
PS‖ = ‖

−→
SQ‖;

the latter equality is equivalent to both (b) and (c). �

Definition 5.11. Let P be a point on a circle centered at C. A tangent line to the circle at P is
a line through P orthogonal to

−−→
CP. See DRAWING 5.8 at the end of this chapter.

A tangent line is not hard to construct. If
−−→
CP =< v1, v2 >, let ~v ≡< −v2, v1 >, orthogonal to−−→

CP since their dot product is 0; then

{P + t~v | t is real)}
is the desired line.
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Physically, imagine the disc enclosed by the circle is a merry-go-round in motion, with you
clinging to the point P on the edge of the merry-go-round. The tangent line at P is the route your
body would take if you stepped off the merry-go-round, until gravity brought you to earth.

Example 5.12. Find the tangent line to the circle centered at (3, 1) at the point (3 +
√

2, 1−
√

2)
on the circle.

Solution. In the language of Definition 5.11 and the discussion succeeding it, C = (3, 1), P =
(3 +

√
2, 1−

√
2), and < v1, v2 >≡

−−→
CP =

√
2 < 1,−1 > . The desired line is

{(3 +
√

2, 1−
√

2) + t < 1, 1 > | t is real}.
See DRAWING 5.9 at the end of this chapter.

Examples 5.13. In each of the parallelograms in DRAWINGS 5.10 at the end of this chapter, use
the results of Chapters III–V to fill in any lengths of sides or measures of angles, whenever possible.
Do not assume anything is drawn to scale.

Solutions. See DRAWINGS 5.11 at the end of this chapter.

(a) Propositions 3.3 and 5.5. (b) Propositions 3.3 and 5.5. (c) Propositions 3.3, 3.13, and 5.7. (d)
Propositions 3.3, 3.13, 5.6, and 5.7. (e) Propositions 3.3, 3.13, Pythagorean theorem and 5.6. (f)
Propositions 3.3, 3.13, 5.5 and 5.6 and the Pythagorean theorem. (g) Propositions 3.13 and 5.6. (h)
Propositions 3.3, 3.13, 5.5 and 5.6 and the Pythagorean theorem. (i) Propositions 3.3, 3.13, and 5.7.

Examples 5.14. In each of the triangles in DRAWINGS 5.12 at the end of this chapter, use the
results of Chapters III–V to fill in any lengths of sides or measures of angles, whenever possible. Do
not assume anything is drawn to scale.

Solutions. See DRAWINGS 5.13 at the end of this chapter. Each part uses Theorem 5.10 and the
Pythagorean theorem.

Examples 5.15. In each of the figures in DRAWINGS 5.14 at the end of this chapter, find x and
y. All quadrilaterals are parallelograms.

Solutions. (a) By Theorem 5.2, (2x+ 25) = (5x− 11), so x = 12. By Corollary 5.3, (y + 10) = 2y,
so y = 10.

(b) By Proposition 5.5, (2x− 10) = 18, so x = 14. By Proposition 3.3, 18 = (y + 8), so y = 10.

(c) By Propositions 5.6 and 3.13, 2x = 10 = (y − 6), so x = 5 and y = 16.

(d) By Theorem 5.10, (3x− 5) = (x+ 10), so x = 15
2 .

(e) By Theorem 5.10, 2(2x+ 1) = (x+ 20), so x = 6.
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HOMEWORK

HWV.1. Find the tangent line to the circle centered at (1, 2) at the point (2, 2+
√

3) on the circle.

HWV.2. In each of the parallelograms in DRAWINGS 5.15 at the end of this chapter, use the
results of Chapters III–V to fill in any lengths of sides or measures of angles, whenever possible. Do
not assume anything is drawn to scale.

HWV.3. In each of the triangles in DRAWINGS 5.16 at the end of this chapter, use the results
of Chapters III–V to fill in any lengths of sides or measures of angles, whenever possible. Do not
assume anything is drawn to scale.

HWV.4. In each of the figures in DRAWINGS 15.17 at the end of this chapter, find x and y. All
quadrilaterals are parallelograms. Do not assume anything is drawn to scale.

HWV.5. Let P be a point on a circle, as in Definition 5.11. Show that no other point on the
tangent line to the circle at P is on the circle.

HWV.6. Suppose P,Q,R are points such that
−−→
QP ⊥

−−→
QR. Show that ‖

−−→
PQ‖ ≤ ‖

−→
PR‖.

HWV.7. Given two points P,Q, show that the perpendicular bisector (Definition 5.8) of
−−→
PQ equals

the set of all points equidistant from P and Q.



121

HOMEWORK ANSWERS

HWV.1. P = (2, 2 +
√

3) + t < −
√

3, 1 > (t real).

HWV.2. See DRAWINGS 5.18 at the end of this chapter.

HWV.3. See DRAWINGS 5.19 at the end of this chapter.

HWV.4. (a) x = 7 (b) x = 1 (c) x = 2, y = 5
4 (d) x = 6, y = 3 (e) x = 2, y = 7

2 .

HWV.5. Let C be the center of the circle. If Q (not equal to P ) is on the line, then ‖
−−→
CQ‖2 =

‖
−−→
CP‖2 + ‖

−−→
PQ‖2, so ‖

−−→
CQ‖ > ‖

−−→
CP‖, the radius of the circle. Thus Q cannot be on the circle.

HWV.6. By Proposition 4.15,

‖
−→
PR‖2 = ‖

−−→
PQ+

−−→
QR‖2 = ‖

−−→
PQ‖2 + ‖

−−→
QR‖2 ≥ ‖

−−→
PQ‖2.

�

HWV.7. Suppose R is a point equidistant from P and Q. By Theorem 5.10, the line from R to
the midpoint of

−−→
PQ is perpendicular to

−−→
PQ; this is saying that R is on the perpendicular bisector

of
−−→
PQ. See DRAWING 5.20 at the end of this chapter.
Conversely, if R is on the perpendicular bisector of

−−→
PQ, then by the Pythagorean theorem (see

DRAWING 5.21 at the end of this chapter),

‖
−→
RP‖2 = ‖1

2
−−→
PQ‖2 + ‖

−→
RS‖2 = ‖

−−→
RQ‖2.
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CHAPTER VI: Exponential, Cosine and Sine; Angle Revisited.

We used the dot product to characterize orthogonality, which turned out to correspond to an
angle of measure π

2 (see Proposition 4.15). We shall see in this chapter that any angle measure may
be described with dot product. This will be accomplished after using the polar form of complex
numbers (Definition 1.15) to introduce what is traditionally taught as a completely separate and
disjoint subject, in subject matter and style, what is known as trigonometry (see Definition 6.1). We
shall see that the partitioning separation of geometry and trigonometry is unnatural, dependent on
fundamental misunderstandings of math: both trigonometry and geometry are intimately involved
with triangles and their relevant parameters (length, area, and angle).

The key results of this chapter are described by DRAWING 6.1 at the end of this chapter, where
the fundamental trigonometric functions sine and cosine are defined, and Theorem 6.9, where the
angle between vectors is measured with dot product and norm.

Complex numbers (from Chapter I) will give a straightforward definition of the trigonometric
functions sine and cosine (Definition 6.1) and a very useful way to calculate angle measure (Theorem
6.9).

The reader should, before proceeding, review the exponential function described in 1.12–1.15,
Lemma 2.8, and, most importantly, DRAWING 2.11 at the end of Chapter II.

All you need to memorize about trig (short for “trigonometry”) is in the following definition and
DRAWING 6.1 at the end of this chapter; compare to DRAWING 2.11 at the end of Chapter II.
Everything in trig follows from DRAWING 6.1; Definitions 6.1 is the first principle that any serious
thinker tries to identify.

Definitions 6.1. Let θ be any real number. Let “cos” be short for cosine, “sin” for sine. Define
the trigonometric functions

cos(θ) ≡ Re(eiθ), sin(θ) ≡ Im(eiθ).

Thus, for 0 ≤ θ ≤ 2π,
< cos θ, sin θ >

is the unit vector such that the counterclockwise angle (Definitions 2.10) from the unit vector< 1, 0 >
to < cos θ, sin θ > has measure θ. See DRAWING 6.1 at the end of this chapter, and recall that
angles corresponds to arcs of the unit circle and angle measure corresponds to arclength, as we drew
in a curved way.

Read out loud, “cos(θ)” reads “cosine of θ,” “sin(θ)” reads “sine of θ.”

Definition 6.2. Stated explicitly as

eiθ = cos θ + i sin θ,

Definition 6.1 is called Euler’s formula.

Compare the easily identified (by symmetry of the unit circle) sines and cosines in DRAWING
6.1 at the end of this chapter to DRAWING 2.13 at the end of Chapter II.
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Some Properties 6.3. From staring at the picture of (cos θ, sin θ) in DRAWING 6.1 at the end of
this chapter and using the symmetry of the unit circle, the following properties seem believable, for
any real θ (see DRAWINGS 6.3 at the end of this chapter). Euler’s formula provides straightforward
proofs.

(i) cos(−θ) = cos θ.

(ii) sin(−θ) = − sin θ.

(iii) cos(θ + π) = − cos θ.

(iv) sin(θ + π) = − sin θ.

(v) (cos θ)2 + (sin θ)2 = 1.

(vi) | sin θ| ≤ 1 and | cos θ| ≤ 1.

(vii) cos(π2 + θ) = − sin θ = − cos(π2 − θ) and sin(π2 + θ) = cos θ = sin(π2 − θ).

(viii) cos(θ+ 2kπ) = cos θ, sin(θ+ 2kπ) = sin θ, for any real θ, integer k (this is called periodicity
of sine and cosine).

Proof: See Theorem 1.12 for relevant properties of the exponential. We will make extensive use of
Euler’s formula in Definition 6.2.

The calculation

cos(−θ) + i sin(−θ) = e−iθ = eiθ = eiθ = cos(θ) + i(− sin(θ))

implies Properties 6.3(i) and (ii).

cos(θ + π) + i sin(θ + π) = ei(θ+π) = eiθeiπ = eiθ(−1) = (− cos(θ)) + i(− sin(θ))
implies Properties 6.3(iii) and (iv).

Property 6.3(v) follows from Euler’s formula, since 1 = |eiθ|2, by Corollary 1.13, while (vi)
follows immediately from (v).

For (vii), make two calculations:

cos(
π

2
−θ)+i sin(

π

2
−θ) = ei(

π
2−θ) = ei

π
2 e−iθ = ieiθ = ieiθ = i(cos θ + i sin θ) = i(cos θ−i sin θ) = sin θ+i cos θ

and

cos(
π

2
+ θ) + i sin(

π

2
+ θ) = ei(

π
2 +θ) = ei

π
2 eiθ = i(cos θ + i sin θ) = (− sin θ) + i cos θ,

thus, equating real and imaginary parts gives the results.

For the periodicity (viii), write

cos(θ + 2kπ) + i sin(θ + 2kπ) = ei(θ+2kπ) = eiθe2kπi = eiθ
(
e2πi

)k
= eiθ1k = eiθ = cos θ + i sin θ,

as desired. �

We similarly get quick algebraic proofs of less-believable formulas for sine and cosine.

Proposition 6.4. Let θ, ψ be arbitrary real numbers.

(i) cos(θ + ψ) = cos θ cosψ − sin θ sinψ.

(ii) sin(θ + ψ) = sin θ cosψ + sinψ cos θ.

(iii) (cos θ)(cosψ) = 1
2 (cos(θ + ψ) + cos(θ − ψ)).

(iv) (sin θ)(sinψ) = 1
2 (cos(θ − ψ)− cos(θ + ψ)).

(v) (sin θ)(cosψ) = 1
2 (sin(θ + ψ) + sin(θ − ψ)).

(vi) (cos θ)2 = 1
2 (1 + cos(2θ)).

(vii) (sin θ)2 = 1
2 (1− cos(2θ)).
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(viii) cos θ = 1
2 (eiθ + e−iθ).

(ix) sin θ = 1
2i (e

iθ − e−iθ).

Proof: For (i) and (ii), calculate

cos(θ + ψ) + i sin(θ + ψ) = ei(θ+ψ) = eiθeiψ = (cos θ + i sin θ)(cosψ + i sinψ)

= (cos θ cosψ − sin θ sinψ) + i (cos θ sinψ + sin θ cosψ) ,
so that equating the real and imaginary parts gives both sum-of-angles results simultaneously.

(iii) and (iv) follow from (i) and 6.3(i) and (ii); (v) follows from (ii) and 6.3(i) and (ii). (vi) and
(vii) are (iii) and (iv) with θ = ψ. (viii) and (ix) follow from Euler’s formula. �

Examples 6.5. Let’s get some explicit sines and cosines.

From DRAWING 6.2 at the end of this chapter,

cos(0) = 1 = cos(2π), sin(0) = 0 = sin(2π), cos(
π

2
) = 0, sin(

π

2
) = 1, cos(π) = −1, sin(π) = 0, cos(

3π
2

) = 0, sin(
3π
2

) = −1.

From Examples 2.9, ei
π
4 = 1√

2
(1 + i), thus

cos(
π

4
) =

1√
2

= sin(
π

4
).

By 6.3(vii),

cos(
3π
4

) = − 1√
2
, sin(

3π
4

) =
1√
2
.

By 6.3(i) and (ii),

cos(−π
4

) =
1√
2
, sin(−π

4
) = − 1√

2
.

The sines and cosines of π
6 and π

3 will follow from 6.3 and Theorem 1.12, as follows.

Denote a ≡ cos(π6 ) and b ≡ sin(π6 ).

Since π
3 =

(
π
2 −

π
6

)
, 6.3(vii) implies that

cos(
π

3
) = b and sin(

π

3
) = a,

thus, by Theorem 1.12,

(a2 − b2) + i(2ab) = (a+ ib)2 =
(
ei

π
6
)2

= ei
π
3 = (b+ ia),

so that 2ab = a, thus

sin(
π

6
) = cos(

π

3
) =

1
2
;

6.3(v) now implies that

sin(
π

3
) = cos(

π

6
) =

√
3

2
.

See also Examples 7.11(e) and HWII.11(g).

Let’s expand our limited knowledge a little more:

cos(
π

8
) =

√
1
2
(1 + cos(

π

4
)) =

√
1
2
(1 +

1√
2
) and sin(

π

8
) =

√
1
2
(1− cos(

π

4
)) =

√
1
2
(1− 1√

2
),

from 6.4 (vi) and (vii).
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cos(
π

12
) = cos(

π

3
− π

4
) = cos(

π

3
) cos(−π

4
)− sin(

π

3
) sin(−π

4
) =

1
2
× 1√

2
−
√

3
2
× (− 1√

2
) =

1 +
√

3
2
√

2
,

sin(
π

12
) = sin(

π

3
− π

4
) = sin(

π

3
) cos(−π

4
) + cos(

π

3
) sin(−π

4
) =

√
3

2
× 1√

2
+

1
2
× (− 1√

2
) =

√
3− 1
2
√

2
,

by 6.4 (i) and (ii) and 6.3 (i) and (ii).

We could also get cosine and sine of π
12 as we did with π

8 :

cos(
π

12
) =

√
1
2
(1 + cos(

π

6
)) =

√
1
2
(1 +

√
3

2
) and sin(

π

12
) =

√
1
2
(1− cos(

π

6
)) =

√
1
2
(1−

√
3

2
),

from 6.4 (vi) and (vii).

Notice how different looking our two different expressions for sine and cosine of π
12 are.

Recall the equating of vectors and complex numbers, as in 1.16 and the comments before Propo-
sition 4.14.

Proposition 6.6. The dot product of the vectors r1eiθ1 and r2eiθ2 is r1r2 cos(θ1 − θ2).

Proof: Proposition 4.14 and Euler’s formula 6.2. �

Definition 6.7. cos−1, the inverse cosine function is defined by

cos−1 y = x ⇐⇒ cosx = y and 0 ≤ x ≤ π;

that is, cos−1 y is the number between 0 and π whose cosine is y.
More succinctly (see Appendix 0.3 and DRAWING 6.4 at the end of this chapter),

cos−1 ≡
(
cos |[0,π]

)−1
.

Remarks 6.8. See Appendix Four for a different definition of cos−1, cos, sin, and exponential, in
that order, via integration.

Most calculators have cos and cos−1 buttons, for decimal approximations, along with a choice
of degrees or radians.

Theorem 6.9. The measure of the angle between vectors ~a and ~b is given by

cos−1

(
~a ·~b
‖~a‖‖~b‖

)
.

Proof: By Lemma 2.8 and the periodicity of eiθ, we may write ~a and ~b in polar form r1e
iθ1 and

r2e
iθ2 , with 0 ≤ θ1 ≤ θ2 ≤ θ1 + 2π, as in Definitions 2.10.
From Proposition 6.6, with r1 ≡ ‖~a‖, r2 ≡ ‖~b‖,(

~a ·~b
‖~a‖‖~b‖

)
= cos(θ2 − θ1) = cos(2π − (θ2 − θ1)).

By Definitions 2.10, (θ2−θ1) is the measure of the counterclockwise angle from ~a to~b and (2π − (θ2 − θ1))
is the measure of the clockwise angle from ~a to ~b (see DRAWING 2.14 at the end of Chapter II).



152

Since those angle measures add up to 2π, the smaller of them is the angle between 0 and π whose
cosine is

(
~a·~b

‖~a‖‖~b‖

)
; that is,

cos−1

(
~a ·~b
‖~a‖‖~b‖

)
is the smaller of those two angle measures. �

The following should be compared to Proposition 4.15.

Corollary 6.10. If ~a and ~b are two nontrivial vectors, then (~a · ~b) > 0 if and only if the angle
between ~a and ~b has measure less than π

2 .

Proof: For 0 ≤ θ ≤ π, the definition of cosine implies that

(∗) cos θ > 0 ⇐⇒ θ <
π

2
.

Denote y ≡ cos θ, then θ = cos−1 y, so (*) becomes

(∗∗) y > 0 ⇐⇒ cos−1 y <
π

2
.

Thus, for θ defined to be the measure of the angle between ~a and ~b, by (**),

~a ·~b > 0 ⇐⇒ y ≡

(
~a ·~b
‖~a‖‖~b‖

)
> 0 ⇐⇒ θ = cos−1

(
~a ·~b
‖~a‖‖~b‖

)
<
π

2
.

�

Examples 6.11. (a) Find the measure of the angle between < 1, 2 > and < −3, 1 > .

(b) Find the measure of the angle between < −1, 1 > and < 0,−1 > .

Solutions. (a) We need norms and dot products:

< 1, 2 > · < −3, 1 >= −3+2 = −1, ‖ < 1, 2 > ‖ =
√

1 + 4 =
√

5, ‖ < −3, 1 > ‖ =
√

9 + 1 =
√

10,

thus, by Theorem 6.9, the angle measure is cos−1
(

−1√
5
√

10

)
= cos−1

(
−1√
50

)
.

From a calculator, a decimal approximation is 1.713 radians (notice that this is greater than π
2 ,

since the dot product is negative) or 98.13 degrees (notice that this is greater than 90 degrees).

(b) <−1,1>·<0,−1>
‖<−1,1>‖‖<0,−1>‖ = − 1√

2
. We already know, from Examples 6.5, that cos(π4 ) = 1√

2
; reflecting

through the y axis (see 6.3(vii) and DRAWING 6.5 at the end of this chapter) tells us that cos( 3π
4 ) =

− 1√
2
, so that our angle measure is

cos−1(− 1√
2
) =

3π
4
.

Remark 6.12. Theorem 6.9 provides another proof of Proposition 4.15 (a) ⇐⇒ (d), equating
orthogonality of vectors ~a and ~b with the angle between ~a and ~b being π

2 .

Remarks 6.13. (a) See Proposition 4.15 for other characterizations of orthogonality.

(b) The periodicity of cosine and sine (6.3(viii)) causes them to be good models of waves, such as
sound waves and electromagnetic waves, including light and radio. See DRAWING 6.6 at the end
of this chapter for cosine.
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A general function describing waves is

f(x) ≡ A cos(γx− ψ),

where A and γ are positive real numbers and ψ is real. A is called amplitude, γ corresponds to
frequency, and ψ is a phase shift. For example, if f(x) is describing sound, A corresponds to
volume and γ to pitch.
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HOMEWORK

HWVI.1. Use the expression from the proof of Theorem 6.9:(
~a ·~b
‖~a‖‖~b‖

)
= cos (θ1 − θ2)

to prove the Cauchy-Schwarz inequality

|~a ·~b| ≤ ‖~a‖‖~b‖

for any vectors ~a,~b.

HWVI.2. Use the Cauchy-Schwarz inequality in HWVI.1 to prove the triangle inequality

‖~a+~b‖ ≤ ‖~a‖+ ‖~b‖

for any vectors ~a,~b. See DRAWING 1.5 at the end of Chapter I for the “triangle” part of this
inequality.

The triangle inequality is stating the popular cliche about the shortest distance between two
points being a straight line.

HWVI.3. For each of the following, find the sine and cosine of the given angle measure θ. See
HWII.11.

(a) 4π.

(b) 5π.

(c) 13π
4 .

(d) 17π
4 .

(e) 3π
2 .

(f) 18π
2 .

HWVI.4. For arbitrary integers k, get a general expression for the sine and cosine of k π2 . Your
answer should have ks in it.

HWVI.5. Get exact expressions (no calculator appproximations) for the sines and cosines of the
following angles.

(a) 2π
3 .

(b) 7π
6 .

(c) 7π
12 .

(d) 5π
12 .

(e) − 7π
12 .

(f) 13π
12 .

HWVI.6. For each of the following pairs of vectors, find the measure of the angle between them.

(a) < −1, 1 > and < 1, 1 > (compare with HWII.12).

(b) < 1, 2 > and < −3, 1 > .

(c) < −1,−2 > and < −1 + 2
√

3,−
√

3− 2 > .
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HWVI.7. (a) Use the Pythagorean theorem and Definition 4.6 to show that, for any vectors ~a,~b,

‖~a‖ ≥ ‖proj~b(~a)‖.
Don’t use the Cauchy-Schwarz inequality or Corollary 4.12.

(b) Use (a) and our algebraic expression Corollary 4.12 for proj~b(~a) to prove the Cauchy-Schwarz
inequality in HWVI.1.

(This proof works in more than two dimensions; see “Linear Algebra, or E Pluribus Unum,”
http://teacherscholarinstitute.com/FreeLinearAlgebraBook.html (2017), 6.26, page 428.)

HWVI.8. Suppose ‖~a +~b‖ > ‖~a −~b‖. What can be said about the measure of the angle between
~a and ~b? Compare this with Proposition 5.6 and HWIV.11, then restate our result in terms of
parallelograms.

HWVI.9. Norms and dot products are numbers associated to vectors or pairs of vectors. Here
we’ll look at how much a pair of vectors ~a,~b is specified by identifying ‖~a‖, ‖~b‖, and ~a ·~b. Informally,
this result says that ~a and ~b are determined up to rotation, which is the effect of multiplying by eiθ

(see Theorem 2.13).

Prove the following. Suppose a, b, and c are real numbers, with a and b nonzero, and ~a and ~b are
vectors such that

‖~a‖ = a, ‖~b‖ = b, and ~a ·~b = c.

Then there’s real θ so that
~b = beiθ and ~a = aei(θ±θ1),

where θ1 ≡ cos−1( cab ).
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HOMEWORK ANSWERS

HWVI.1.

| ~a ·
~b

‖~a‖‖~b‖
| = | cos (θ1 − θ2) | ≤ 1,

by 6.3(vi).

HWVI.2.

‖~a+~b‖2 = ‖~a‖2 + ‖~b‖2 + 2(~a ·~b) ≤ ‖~a‖2 + ‖~b‖2 + 2(‖~a‖‖~b‖) =
(
‖~a‖+ ‖~b‖

)2

,

by 4.5(d) and the Cauchy inequality, in that order.

HWVI.3. (a) cosine is 1, sine is 0.

(b) cosine is −1, sine is 0.

(c) cosine and sine are both − 1√
2
.

(d) cosine and sine are both 1√
2
.

(e) cosine is 0, sine is −1.

(f) cosine is −1, sine is 0.

HWVI.4. In the following, m is an arbitrary integer.
The cosine equals

1, for k = 4m, 0, for k = 1 + 4m or k = 3 + 4m, −1 for k = 2 + 4m.

The sine equals

0, for k = 4m or k = 2 + 4m, 1, for k = 1 + 4m, −1 for k = 3 + 4m.

HWVI.5. (a) 6.3(vii) or 6.4(i) and (ii) lead to cosine equal to − 1
2 and sine equal to

√
3

2 .

(b) from (a) and 6.3(vii) or 6.4(i) and (ii) or 6.3(iii) and (iv), cosine equals −
√

3
2 , sine equals − 1

2 .

(c) from 6.4(vi), cosine equals −
√

1
4 (2−

√
3), sine equals

√
1
4 (2 +

√
3), OR, by 6.4(i), cosine equals

1
2
√

2
(1−

√
3) and sine equals 1

2
√

2
(1 +

√
3).

(d) from 6.3(vii) and (c), OR 6.4(i) and (ii), cosine equals 1
2
√

2
(
√

3−1) and sine equals 1
2
√

2
(1+

√
3).

(e) from 6.3(i) and (ii), and (c), cosine equals −
√

1
4 (2−

√
3) and sine equals −

√
1
4 (2 +

√
3).

(f) from 6.3(iii) and (iv) and Examples 6.5, cosine equals − (1+
√

3)

2
√

2
and sine equals (1−

√
3)

2
√

2
.

HWVI.6. (a) π
2 (b) cos−1( −1

5
√

2
) ∼ 98.1 degrees (c) π

3 or 60 degrees.

HWVI.7. (a) By definition of projection,~b is orthogonal to
(
~a− proj~b(~a)

)
, thus, by the Pythagorean

theorem,
‖~a‖2 = ‖~a− proj~b(~a)‖

2 + ‖proj~b(~a)‖
2 ≥ ‖proj~b(~a)‖

2.

(b) By Corollary 4.12 and (a),

‖~a‖ ≥ ‖proj~b(~a)‖ = ‖

(
~a ·~b
‖~b‖2

)
~b‖ =

|~a ·~b|
‖~b‖2

‖~b‖ =
|~a ·~b|
‖~b‖

.
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HWVI.8. By 4.5(b) and (d),

‖~a+~b‖ > ‖~a−~b‖ ⇐⇒ ‖~a+~b‖2 > ‖~a−~b‖2 ⇐⇒ ‖~a‖2+‖~b‖2+2(~a·~b) > ‖~a‖2+‖~b‖2−2(~a·~b) ⇐⇒ (~a·~b) > 0,

which, by Corollary 6.10, is equivalent to the angle between ~a and ~b measuring less than π
2 .

This is similar to Proposition 5.6 and HWIV.11, which says that ‖~a + ~b‖ equal to ‖~a − ~b‖ is
equivalent to the angle measure between ~a and ~b being equal to π

2 .

Proposition 5.6 is actually a statement about diagonals in a parallelogram. Here is the result of
this problem stated in terms of diagonals in a parallelogram: In a parallelogram, the longer diagonal
goes between the interior angles of smaller measure. See DRAWING 5.5 at the end of Chapter V
for a picture of the diagonals of a parallelogram.

HWVI.9. Lemma 2.8 gives us ~b = beiθ and ~a = aeiψ, for some real θ and ψ. By Proposition 6.6,

c ≡ ~a ·~b = ab cos(θ − ψ)
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CHAPTER VII: Trig and Triangles, Law of Cosines, Law of Sines.

The previous chapter defined trig (short for trigonometry or trigonometric) functions cosine
and sine as the real and imaginary parts of the exponential function restricted to the imaginary axis
(Definition 6.1).

In this chapter we will relate the trig functions, at least for angles that measure between 0 and
π
2 , to certain triangles (Theorem 7.5). We will begin with the Law of Cosines (Theorem 7.1). This
will give a quick proof of our triangle characterization of trig functions, which we will apply, after
some examples, to the Law of Sines (Theorem 7.7). The Law of Cosines and the Law of Sines are
powerful results about triangles; for an indication of their power, see, for example, Chapter X.

The Law of Cosines will be proven with the dot product (Definition 4.1). The Law of Sines will
also follow from novel results about angles appearing in different ways in a circle (Theorem 7.14),
which have numerous other applications.

We have already observed (Definitions 2.3 and DRAWING 2.8(a) at the end of Chapter II) that
triangles may be described by vectors (two are sufficient, three are sometimes desirable); this will
enable us to get the superpowers of the dot product into play.

Theorem 7.1: Law of Cosines. If a, b, c are the lengths of the sides of a triangle and θ is the
measure of the angle opposite the side of length c, then

c2 = a2 + b2 − 2ab cos θ.

See DRAWING 7.1 at the end of this chapter.

Proof: Represent the triangle by vectors ~a,~b,~c, with

a = ‖~a‖, b = ‖~b‖, c = ‖~c‖,

~a and ~b having the same initial point; denote, as usual, by θ the measure of the angle between ~b and
~a (see DRAWING 7.1 at the end of this chapter).

Then, by 4.5 and Theorem 6.9,

c2 = ‖~a−~b‖2 = (~a−~b) · (~a−~b) = ~a ·~a+~b ·~b−2~a ·~b = ‖~a‖2 +‖~b‖2−2‖~a‖‖~b‖ cos θ ≡ a2 +b2−2ab cos θ.

�

Examples 7.2. In each of the drawings in DRAWINGS 7.2 at the end of this chapter, fill in, if
possible, the missing length of side. In (a), also get the missing angle measurements.

We will show later (Examples 7.11(e)), using triangles, that cos(π3 ) = 1
2 ; see also Examples 6.5

and HWII.11(g).

Solutions. (a) Let c be the length of the side opposite the angle of measure π
3 . The Law of Cosines

says
c2 = 32 + 42 − 2 · 3 · 4 cos(

π

3
) = 13,

thus the missing side has length
√

13.

For the missing measures, we can also use the Law of Cosines:

32 = c2 + 42 − 2 · 4 · c cos(θ1) → 9 = 13 + 16− 8
√

13 cos(θ1) → cos(θ1) =
5

2
√

13
,

so that (applying cos−1)
θ1 ∼ 46 degrees.

We could get θ2 similarly, but it’s easier to use the fact that the angle measures add up to 180
degrees:

θ2 = 180− (60 + 46) = 74 degrees.
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We will show, in Chapter X (Theorems 10.4 and 10.6), that, given the lengths of two sides
and the measure of the angle between those sides (called SAS: side-angle-side), a unique triangle
with those measurements always exists, with the remaining side calculated uniquely by the Law of
Cosines.

(b) Let a be the unknown side length. By the Law of Cosines,

52 = a2 + 62 − 2a · 6 cos(
π

3
),

so that a satisfies the quadratic equation

a2 − 6a+ 11 = 0.

By the quadratic formula (Definitions 0.6),

a =
1
2
[
6±

√
36− 44

]
= 3±

√
−2 = 3±

√
2i;

that is, no real solution of the quadratic equation exists.

This means there is no such triangle as we drew in DRAWINGS 7.2(b) at the end of this chapter.
Apparently drawings can lie.

The information in DRAWINGS 7.2(b) at the end of this chapter is an example of SSA: side-
side-angle; it is more confused when the known angle is not between the two known sides. We have
just seen that there might be no such triangle. It is also possible to have exactly one such triangle
(see DRAWINGS 7.2(c) at the end of this chapter), and it is possible to have two such triangles (see
DRAWINGS 7.2(d) at the end of this chapter). See Chapter X, especially Theorem 10.7.

Remarks 7.3. Choosing θ = π
2 in the Law of Cosines yields the Pythagorean Theorem (Proposition

4.15). Choosing another angle measure equal to π
2 will also, for angle measures between 0 and π

2 ,
produce an equivalent definition of sine and cosine in Theorem 7.5.

The Law of Cosines (Sines) relates cosines (sines) to lengths of sides in a triangle. For positive
angle measures less than π

2 , sine and cosine may be, equivalently to Definition 6.1, defined in terms
of certain triangles.

Definitions 7.4 An angle of measure π
2 is sometimes called a right angle. A right triangle is a

triangle that contains a right angle.
The hypotenuse of a right triangle is the side opposite the right angle. The legs are the other

two sides of the right triangle.
Here is a convenient place to mention one more trig function, the tangent:

tan θ ≡ tangent of θ ≡ sin θ
cos θ

(θ real).

See DRAWING 7.3 at the end of this chapter.

It is also convenient to mention here an angle that arises often in practice. The angle of
elevation from one object to another object that is higher above the ground is the angle between
a horizontal line through the lower object and the line from the lower object to the higher object.
See DRAWING 7.4 at the end of this chapter.

Theorem 7.5. For any right triangle, denote by c the length of the hypotenuse, by a and b the
lengths of the legs, and by θ the measure of the angle between the hypotenuse and the side of length
a.

Then

cos θ =
a

c
(“adjacent over hypotenuse”) sin θ =

b

c
(“opposite over hypotenuse”)
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and
tan θ =

b

a
(“opposite over adjacent”).

See DRAWING 7.5 at the end of this chapter.

Proof: By the Law of Cosines applied to DRAWING 7.5 at the end of this chapter,

b2 = c2 + a2 − 2ac cos θ,

so that, by the Pythagorean theorem,

cos θ =
c2 + a2 − b2

2ac
=
a2 + b2 + a2 − b2

2ac
=
a

c
.

Thus
b

c
= cos(

π

2
− θ) = sin θ,

by 6.3(vii) and Proposition 3.9. �

Examples 7.6. (a) Get sines, cosines, and tangents, of the angle measures θ1 and θ2 in DRAWINGS
7.6(a) at the end of this chapter.

(b) Find the angle measure θ in the triangle in DRAWINGS 7.6(b) at the end of this chapter.

(c) Suppose the measure of the angle of elevation to the top of a tree is 85 degrees, when you stand
10 feet from the base of the tree (see DRAWINGS 7.6(c) at the end of this chapter). Find the height
of the tree.

(d) Suppose now your tree (or the tower of a medieval castle, if you prefer) is surrounded by a moat
of unknown width. You measure the angle of elevation to the top of the tree at the edge of the moat
to be 80 degrees, and the measure of the angle of elevation 20 feet away from the moat to be 40
degrees. See DRAWINGS 7.6(d) at the end of this chapter.

Find the height of the tree and the width (labeled w in DRAWING 7.6(d)) of the moat.

See DRAWINGS 7.6 at the end of this chapter.

Solutions. (a) The Pythagorean theorem implies that the hypotenuse is of length 5, thus we may
use Theorem 7.5. sin(θ1) = cos(θ2) = 4

5 ; sin(θ2) = cos(θ1) = 3
5 . tan(θ1) = 4

3 , tan(θ2) = 3
4 .

(b) sin(θ) = 7
14 = 1

2 , thus, since sin(π6 ) = 1
2 , the answer in degrees is θ = 30 degrees. Or we could

have used a calculator, to get sin−1(0.5)) θ = 30 degrees.

(c) H
10 feet = tan(85 degrees), thus

H = 10 tan(85 degrees) feet ∼ 114 feet.

(d) As with (c),

H = (20 + w) tan(40 degrees) ∼ (20 + w)0.84 and H = w tan(80 degrees) ∼ 5.67w.

There are many ways to solve for H and w. Let’s set the two expressions for H together:

(20 + w)0.84 = 5.67w → 16.8 + 0.84w = 5.67w → 16.8 = 4.83w → w ∼ 3.48,

so that H ∼ 5.67× 3.48 = 19.7; height 19.7 feet, width of moat 3.48 feet.

See Examples 7.9 for an easier way (using the Law of Sines) to do (d).
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Theorem 7.7: Law of Sines. If a triangle has sides of length c1, c2, c3, and, for j = 1, 2, 3, θj is
the measure of the angle opposite the side of length cj , then

c1
sin θ1

=
c2

sin θ2
=

c3
sin θ3

.

Proof: Label the sides of the triangle as vectors ~c1,~c2,~c3, with

‖~cj‖ = cj , j = 1, 2, 3,

numbered so that ~c1 is the longest side:

c1 ≥ c2 and c1 ≥ c3.

For j = 1, 2, 3, let Pj be the vertex opposite the side ~cj .
See DRAWINGS 7.8(a) at the end of this chapter.
Note first that proj~c1(P1) is on the line segment

−−−→
P2P3; that is, in DRAWINGS 7.7(a)–(c) (see

end of chapter), both (b) and (c) are impossible, for the following reason:
By the Pythagorean Theorem, in DRAWINGS 7.7(b) c3 > c1, while in DRAWINGS 7.7(c)

c2 > c1; in either (b) or (c), ~c1 is not the longest side.

Finally, let

h ≡ ‖P1 − proj~c1(P1)‖, d1 ≡ ‖P2 − proj~c1(P1)‖, d2 ≡ ‖P3 − proj~c1(P1)‖.
See DRAWINGS 7.8 at the end of this chapter. Note that c1 = (d1 + d2).

Theorem 7.5 implies that

sin(θ2) =
h

c3
and sin(θ3) =

h

c2
.

Solving for h in the first equation, and substituting into the second equation gives us

sin(θ3) =
c3 sin(θ2)

c2
,

which implies that
c2

sin θ2
=

c3
sin θ3

. (∗)

By (6.3), (6.4), Theorem 7.5, and Proposition 3.9,

c1
sin θ1

=
c1

sin(π − (θ2 + θ3))
=

(d1 + d2)
sin(θ2 + θ3)

=
(d1 + d2)

((sin θ2)(cos θ3) + (sin θ3)(cos θ2))

=
(d1 + d2)(

( hc3 )(d2c2 ) + ( hc2 )(d1c3 )
) =

c2c3(d1 + d2)
h(d2 + d1)

= c2(
c3
h

) =
c2

sin θ2
;

combined with (*), this concludes the proof. �

Remark 7.8. For a right triangle, the Law of Sines follows from Theorem 7.5, with cj

sin θj
equal to

the length of the hypotenuse, j = 1, 2, 3.

Examples 7.9. (a) Find all missing lengths of sides and measures of angles, up to two decimal
places, in DRAWINGS 7.9(a) at the end of this chapter.

(b) Answer Examples 7.6(d) using Law of Sines.

(c) Without getting wet, you wish to know the width of a stream. From two places 100 feet apart
on the edge of the stream, you measure the angle to a tree on the opposite side, as in DRAWINGS
7.9(c) at the end of this chapter.

Find the width of the stream (see red drawings in DRAWINGS 7.9(c) at the end of this chapter),
and the distances from your two places to the tree on the opposite side.
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Solutions. (a) Let c1 be the length of the side opposite the angle of measure π
4 , and let c3 be the

length of the remaining side.
The missing angle measure, call it θ3, equals π − (π4 + π

6 ) = 7π
12 .

By the Law of Sines,
c1

sin π
4

=
50

sin π
6

=
c3

sin 7π
12

,

so that, making decimal approximations,

c1 = 100× 1√
2
∼ 70.71, c3 = 100× sin(

7π
12

) ∼ 96.59.

(b) See DRAWINGS 7.9(b) at the end of this chapter, where we have labeled all side lengths and
angle measures.

By the Law of Sines, applied to the triangle on the left with sides of length c1, c2, 20, we also
have c2 = 20. (More generally, see Theorem 7.10(a) ⇐⇒ (c), an application of the Law of Sines to
isosceles triangles.)

Now we may focus on the right triangle on the right of the picture:

sin(80 degrees) =
H

20
→ H = 20 sin(80 degrees) ∼ 19.70; similarly, w = 20 cos(80 degrees) ∼ 3.47.

(c) See DRAWINGS 7.9(c) at the end of this chapter, where the missing angle measure is

π − (
2π
3

+
π

4
) =

π

12
.

By the Law of Sines,
c3

sin( 2π
3 )

=
c2

sin(π4 )
=

100
sin( π12 )

∼ 386,

thus
c3 ∼ 386 sin(

2π
3

) ∼ 334 and c2 ∼ 386 sin(
π

4
) ∼ 273.

Those are the distances (in feet) to the tree, from the two points where we made angle measurements.

The width of the stream (see the last drawing in DRAWINGS 7.9(c)at the end of this chapter)
is now seen to be

273 sin(
π

3
) ∼ 236 feet.

Examples 7.2, 7.6, and 7.9 are excellent detective work. Examples 7.9(c), for example, gets
extensive information about the river and its opposite side, all while staying on one side of the river
high and dry.

Recall the definition of an isosceles triangle in Chapter V (Definition 5.9). The following theorem
gives many characterizations of being isosceles. Note that the equivalence of (a) and (c) in Theorem
7.10 shows that we could have equivalently replaced “side” with “angle” in the definition of an
isosceles triangle.

See Definitions 3.11 for the definition of “midpoint” and “bisect.”

Theorem 7.10. Let P,Q,R be the three vertices of a triangle (see DRAWINGS 7.10 at the end of
this chapter). Then the following are equivalent.

(a) ‖
−→
PR‖ = ‖

−−→
QR‖.

(b) The orthogonal projection of the vertex R onto the opposite side
−−→
PQ is the midpoint of

−−→
PQ.

(c) The measure of the interior angle at P equals the measure of the interior angle at Q.

(d) The line segment between R and its orthogonal projection onto
−−→
PQ bisects the interior angle at

R.
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Proof: The equivalence of (a) and (b) is Theorem 5.10.

Label angle measures θj , j = 1, 2, 3, as in the second page of DRAWINGS 7.10, at the end of
this chapter.

(c) → (a) follows from the Law of Sines. The converse (a) → (c) almost immediately follows from the
Law of Sines: (a) implies that sin(θ1) = sin(θ2), which implies (see 6.3(ii) and (iv) and DRAWING
6.1 at the end of Chapter VI) that

θ1 = θ2 OR θ2 = π − θ1.

But θ2 = π− θ1 implies that θ3 = π− (θ2 + θ1) = 0, not much of a triangle. Thus θ1 must equal θ2,
the assertion of (c).

So far we’ve shown the equivalence of (a), (b), and (c).

For the equivalence of (c) and (d), let S ≡ proj ~PQ(R) and label additional angle measures θ4, θ5,
as in DRAWING 7.11 at the end of this chapter. Note that (b) ⇐⇒ (c) implies that DRAWING
7.11 at the end of this chapter is accurate.

By Proposition 3.9, looking at triangles PSR and SQR in DRAWING 7.11 at the end of this
chapter,

θ1 + θ4 +
π

2
= π =

π

2
+ θ2 + θ5,

so that θ1 = θ2 ⇐⇒ θ4 = θ5; the latter equality is (d), while the former is (c), so that (c) and (d)
are equivalent. �

Examples 7.11. In (a)–(d) of DRAWINGS 7.12 at the end of this chapter, label, where possible,
missing side lengths or angle measures.

(e) Use Theorem 7.10 and 7.5 to get sine and cosine of π
4 ,

π
3 , and π

6 .

Solutions. (a) By Theorem 7.10(a) ⇐⇒ (c), θ2 = 72 degrees, thus θ1 = 180− 2 · 72 = 36 degrees.
From the Law of Cosines,

s2 = 52 + 52 − 2 · 5 · 5 cos(36) → s ∼ 3.1.

(b) Again by Theorem 7.10(a) ⇐⇒ (c), s1 = 7. The measure θ = 180 − 2 · 40 = 100, so, as with
(a),

s22 = 72 + 72 − 2 · 7 · 7 cos(100) → s2 ∼ 10.7.

We remark that (a) and (b) could also be done with the Law of Sines.

(c) By Theorem 7.10(a) ⇐⇒ (d), φ = 32 degrees, thus s1 = 10 cos(32) ∼ 8.5, and both s2 and s3
equal 10 sin(32) ∼ 5.3.

(d) By Theorem 7.10(a) ⇐⇒ (b), θ1 = θ2 = π
2 . By Theorem 7.10(a) ⇐⇒ (c), θ5 = θ6; by (a)

⇐⇒ (d), θ4 = θ3. Finally, focus on either half of the picture:

cos θ5 =
7
16
→ θ5 ∼ 64 degrees → θ4 = (90− 64) = 26 degrees.

(e) By Theorem 7.10(a) ⇐⇒ (c), cos(π4 ) = sin(π4 ) ≡ x, so (see DRAWINGS 7.12(e) at the end of
this chapter), by the Pythagorean theorem, x2 + x2 = 1 → x = 1√

2
.

For sine and cosine of π
3 , denote x ≡ cos(π3 ) = sin(π6 ), y ≡ cos(π6 ) = sin(π3 ); see DRAWINGS

7.12(e) at the end of this chapter, where we have drawn a right triangle whose hypotenuse is length
1, base is x, height is y.

As drawn in DRAWINGS 7.12(e), paste a reflection of our original triangle on its right, to form
a triangle all of whose angle measures are π

3 . By Theorem 7.10(a) ⇐⇒ (c), all the side lengths are
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equal, hence equal to 1. By Theorem 7.10(a) ⇐⇒ (b), the base of the original triangle is 1
2 ; thus

x = 1
2 . Now apply the Pythagorean theorem to the original right triangle:

(
1
2
)2 + y2 = 1 → y =

√
3

2
.

See also Examples 6.5 and HWII.11(g).

If we use both the Law of Cosines and the Law of Sines, we may improve Theorem 7.10(a) ⇐⇒
(c).

Corollary 7.12. In a triangle, one angle measure is greater than or equal to another angle measure
if and only if the length of the side opposite to the first angle is greater than or equal to the length
of the side opposite to the second angle. See DRAWING 7.13 at the end of this chapter.

Proof: Denote by θ1, θ2 the two angle measures being compared, and, for j = 1, 2, let cj be the
length of the side opposite θj (see DRAWING 7.13 at the end of this chapter).

Suppose θ1 ≥ θ2.

If θ1 ≥ π
2 , then by the Law of Cosines, letting c3 be the length of the third side,

c21 = c22 + c23 − 2c2c3 cos θ1 ≥ c22 + c23 > c22,

since cos θ1 ≤ 0, so that c1 ≥ c2.
If θ1 < π

2 , then θ1 ≥ θ2 implies sin θ1 ≥ sin θ2, thus by the Law of Sines,

c1 = c2

(
sin θ1
sin θ2

)
≥ c2.

Conversely, if θ2 > θ1, the same argument shows that c2 > c1. Thus c1 ≥ c2 implies that
θ1 ≥ θ2. �

Definitions 7.13. We have defined angles in terms of arclengths of circles; this means an angle is
formed by the center of a circle and two points on the circle (Definitions 2.10). We could also form
an angle by replacing the center with a third point on the circle. In this picture (DRAWING 7.14 at
the end of this chapter), the angle formed at the center is called a central angle, while the angle
formed at the third point is called an inscribed angle.

See DRAWING 7.14 at the end of this chapter, where the center of the circle is C, the initial
points on the circle are Q and R and the third point on the circle is P ; thus the inscribed angle ψ
is between

−−→
PQ and

−→
PR while the central angle θ is between

−−→
CQ and

−→
CR.

Theorem 7.14. Given any pair of points Q and R on a circle, the central angle formed by them
measures twice the measure of the inscribed angle formed by them with a third point P on the circle;
that is, θ = 2ψ, in DRAWING 7.14 at the end of this chapter.

Proof: Throughout this proof, the points C,P,Q,R are as in DRAWING 7.14 at the end of this
chapter.

CASE 1:
−−→
PQ or

−→
PR contains C.

Without loss of generality, assume C is on
−−→
PQ; see DRAWING 7.15 at the end of this chapter.

Since ‖
−−→
PC‖ = ‖

−→
CR‖ (the radius of the circle), Theorem 7.10 implies that φ (from DRAWING

7.15 at the end of this chapter) equals ψ, thus, by Proposition 3.9,

ψ + ψ + (π − θ) = π,

so that θ = 2ψ.
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CASE 2: C is enclosed by
−−→
PQ,

−→
PR, and the counterclockwise arc from R to Q, as in DRAWING

7.14 at the end of this chapter and DRAWINGS 7.16 at the end of this chapter.

Add, to DRAWING 7.14 at the end of this chapter, the diameter consisting of the line segment
PC, extended to the point on the circle opposite P ; see DRAWINGS 7.16 at the end of this chapter,
including labels for measures of angles that follow from Case 1.

By Case 1, 2ψ = 2ψ1 + 2ψ2 = θ1 + θ2 = θ. See DRAWING 7.16 at the end of this chapter.

CASE 3: C is outside the subset of R2 enclosed by
−−→
PQ,

−→
PR, and the counterclockwise arc from R

to Q, in DRAWING 7.14 at the end of this chapter; see DRAWINGS 7.17 at the end of this chapter.

Add on the same diameter that we did in Case 2; see DRAWINGS 7.17 at the end of this
chapter, where we have labeled measures of angles that follow from Case 1.

By Case 1, 2(ψ + ψ1) = θ + 2ψ1 → 2ψ = θ. See DRAWING 7.17 at the end of this chapter. �

We may generalize Theorem 7.14 considerably in Theorem 7.15, in each part by drawing an
extra line. First let’s reformulate DRAWING 7.14 at the end of this chapter and the conclusion of
Theorem 7.14 in terms of arclength (see Definitions 2.10), on a circle of radius r: see DRAWING
7.18 at the end of this chapter.

Theorem 7.15. Suppose the circles in DRAWINGS 7.19 and 7.20 at the end of this chapter are
both of radius r.

(a) In DRAWING 7.19, θ = 1
2 (φ+ ψ).

(b) In DRAWING 7.20, θ = 1
2 (φ− ψ).

Proof: DRAWING 7.21 at the end of this chapter is DRAWING 7.19 with one additional line, and
the angle measures that then follow from Theorem 7.14, added; the same relationship holds between
DRAWING 7.22 at the end of this chapter and DRAWING 7.20.

As drawn in DRAWINGS 7.21 and 7.22, all that remains is to use the facts that the sum of the
measures of angles in a triangle is π (Proposition 3.9) and the sum of supplementary (see Proposition
3.6) angle measures is π. �

Examples 7.16. In each of the examples in DRAWINGS 7.23 at the end of this chapter, find the
measure of the angle θ.

Solutions. (a) Since r = 4, the angle measure φ in DRAWING 7.19 at the end of this chapter is
5π
4 . Since ψ in DRAWING 17.19 is 0, θ = 1

2φ = 5π
8 .

OR we could have used DRAWINGS 7.18 at the end of this chapter.

(b) Since r = 8, we now have φ = π
4 , ψ = π

8 , so θ = 1
2 (π4 + π

8 ) = 3π
16 .

(c) Now φ = 5π
12 and ψ = π

6 , but θ is outside the disc, so θ = 1
2 ( 5π

12 −
π
6 ) = π

8 .

(d) We could use Theorem 7.15(a) with φ = ψ = 3π
4 , or we could use the original definition of angle

measure (2.10), to get θ = 3π
4 .

We may also use Theorem 7.14 to embellish the Law of Sines (Theorem 7.7), as follows, specifying
what the common ratio of side length to sine of opposite angle measure is.



175

Theorem 7.17. If there is a circle of radius r that contains the vertices of a triangle, then the
common ratio from Theorem 7.7, of length of side to sine of measure of angle opposite side equals
the diameter 2r; that is (terminology from Theorem 7.7),

cj
sin θj

= 2r, j = 1, 2, 3.

Proof: Let C be the center of the specified circle. Let ~cj , cj , θj , Pj , j = 1, 2, 3, be as in the proof of
Theorem 7.7. See DRAWING 7.24 at the end of this chapter, where we have added on the central
angle measuring 2θ1 guaranteed by Theorem 7.14.

By the Law of Cosines (Theorem 7.1),

c21 ≡ ‖~c1‖2 = ‖
−−→
CP3‖2+‖

−−→
CP2‖2−2‖

−−→
CP3‖‖

−−→
CP2‖ cos(2θ1) = 2r2−2r2 cos(2θ1) = 2r2(1−cos(2θ1)) = 4r2 sin2(θ1),

by 6.4(vii); thus
c1

sin θ1
= 2r.

The same argument applies to c2
sin θ2

and c3
sin θ3

. �
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HOMEWORK

HWVII.1. Get the sines, cosines, and tangents, of the angles of measure θ1 and θ2, in DRAWING
7.25 at the end of this chapter.

HWVII.2. Where possible in DRAWINGS 7.26 at the end of this chapter, find missing lengths of
sides and measures of angles.

HWVII.3. Suppose that, when you are 50 meters from a skyscraper, the angle of elevation from
your feet to the top of the skyscraper has measure 60 degrees.

Get the height of the skyscraper. See DRAWING 7.27 at the end of this chapter for a pictorial
hint.

HWVII.4. Suppose now that the skyscraper has a rectangular front and has a rectangle of broken
glass perpendicular to the front of the skyscraper. At the edge of the broken glass, the angle of
elevation from your feet to the top of the skyscraper is 88 degrees. 100 meters away from the edge
of the broken glass, the angle of elevation from your feet to the top of the skyscraper is 70 degrees.

Get the height of the skyscraper and the width of the broken glass in front of it. See DRAWING
7.28 at the end of this chapter for a pictorial hint.

HWVII.5. A triangle is equilateral if each of its sides has the same length. Show that a triangle
is equilateral if and only if each of its vertices have interior angles of the same measure.

HWVII.6. In DRAWINGS 7.29 at the end of this chapter, find all missing lengths of sides and
measures of angles, where possible.

HWVII.7. In each part of DRAWINGS 7.30 at the end of this chapter, find the angle measure θ.

HWVII.8. Suppose a quadrilateral has all its vertices on a circle. Show that opposite angle
measures add up to π.

HWVII.9. Suppose a parallelogram has all its vertices on a circle. Show that it must be a rectangle.

HWVII.10. Suppose a triangle has all its vertices on a circle, with two of its vertices on a diameter
of the circle. Show that the other vertex has a right angle as its interior angle.
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HOMEWORK ANSWERS

HWVII.1. The Pythagorean theorem tells us the length of the vertical leg is 12.

sin(θ1) = cos(θ2) = 12
13 ; sin(θ2) = cos(θ1) = 5

13 ; tan(θ1) = 12
5 ; tan(θ2) = 5

12 .

HWVII.2. See DRAWINGS 7.31 at the end of this chapter.

HWVII.3. 50 tan(60 degrees) = 50
√

3 meters, ∼ 86.60 meters. See DRAWING 7.32 at the end of
this chapter.

HWVII.4. The height of the skyscraper is sin(88 degrees)
(

100 sin(70 degrees)
sin(18 degrees)

)
∼ 303.91 meters.

The width of the broken glass is cos(88 degrees)
(

100 sin(70 degrees)
sin(18 degrees)

)
∼ 10.61 meters.

See DRAWING 7.33 at the end of this chapter.

HWVII.5. Theorem 7.10 (a) ⇐⇒ (c), applied to each pair of sides.

HWVII.6. (a) s1 = 7 sin(20 degrees) = s2, s3 = 7 cos(20 degrees), θ1 = (180 − 20 − 90) degrees =
70 degrees = θ2, θ3 = 20 degrees, by Theorem 7.10 (a) ⇐⇒ (d).

(b) s1 = 6, θ = 120 degrees, s2 = 6
√

3 (could be done by Law of Sines, Law of Cosines, or by
chopping up the triangle into two right triangles.

(c) θ4 = θ5 = 90 degrees; s = 8, θ3 = cos−1( 3
5 ) = θ6; θ1 = cos−1( 4

5 ) = θ2.

HWVII.7. (a) 4π
3 (b) 3π

20 (c) 3π
20 (d) π

4 .

HWVII.8. See DRAWING 7.34 at the end of this chapter.

HWVII.9. See DRAWING 7.35 at the end of this chapter.

HWVII.10. See DRAWING 7.36 at the end of this chapter.
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CHAPTER VIII: Congruence and Similarity.

An object might get moved around without changing its size or shape; that is, without changing
length, angle measure, or area. Even though the moved object might consist of different points in
the plane than the original object, we would like to think of it as being the same, in some sense (see
Theorem 8.3).

For a physical model, imagine the object of interest as cut out of cardboard. We can move the
object around on top of the plane, or even (in the case of reflection) in three dimensions before
returning to the plane, so that it occupies different points, yet we have the same piece of cardboard.

Theorem 8.3(a) is a precise statement of the intuition of the last two paragraphs, preceded by
a precise description of the motions we are applying to the desired objects (Definitions 8.1(a), (b),
and (c); see also DRAWING 8.5(a)–(c) at the end of this chapter).

We also discuss a motion (Definition 8.1(d); see also DRAWING 8.5(d) at the end of this chapter)
that preserves shape, but not necessarily size, of an object, in Theorem 8.3(b). Physically, we could
get this effect, at least in our perception of said object, by zooming in or out on that piece of
cardboard from paragraph two representing said object.

The proof of Theorem 8.3 is put off until Chapter IX, which begins with a discussion of matrices,
the fundamental idea in the subject known as linear algebra. The reader who is willing to take
Theorem 8.3 as an intuitive axiom may skip Chapter IX, without jeopardizing geometry. In fact, if
a student prefers to avoid, in addition, the language of functions (Appendix 0), DRAWING 8.5(a)–
(d) at the end of this chapter, along with Proposition 8.5 and the one-line statements of preservation
in Theorem 8.3(a) and (b), provide sufficiently believable postulates to adopt.

Definitions 8.4 contain the definitions of congruent (informally, same size and shape) and similar
(informally, same shape) objects.

Definitions 8.1. Here are the motions (also called actions) of interest: informally, sliding (transla-
tion), rotating, flipping (reflection), and stretching/shrinking (magnification). These can be thought
of as functions (see Appendix 0): writing f for the function representing a motion, if I is a point in
the plane, then the image of I, denoted f(I), is the point after the motion has been applied; that
is, where I is moved to.

We will write I ′ for f(I).

Note that these functions may also be thought of as acting on vectors:

f(< v1, v2 >) ≡< v′1, v
′
2 > if f(v1, v2) ≡ (v′1, v

′
2);

see Definition 9.3 for the consistency of these definitions.

In each of (a)–(d), I is an arbitrary point in the plane and I ′ is the image of I.

(a) Given a vector ~v, the translation by ~v means I ′ ≡ I + ~v. See DRAWING 8.1 at the end of this
chapter.

(b) Given an angle measure θ and a point P the (counterclockwise) rotation means I ′ is on the
same circle centered at P as I, with the measure of the counterclockwise angle from

−→
PI to

−−→
PI ′ equal

to θ.
Equivalently, ‖

−→
PI‖ = ‖

−−→
PI ′‖ and the measure of the counterclockwise angle from

−→
PI to

−−→
PI ′ is

θ. See DRAWING 8.2 at the end of this chapter.
In the language of complex numbers,

I ′ = P + (I − P )eiθ.

See DRAWING 8.2 at the end of this chapter.
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(c) Given a line `, the reflection thru ` means that ` is the perpendicular bisector of the line segment
between I and I ′ (see Definition 5.8). See DRAWING 8.3 at the end of this chapter.

(d) Given a positive number R, magnification by R moves (a, b) to (Ra,Rb); that is, if I ≡ (a, b),
then I ′ = (Ra,Rb). See DRAWING 8.4 at the end of this chapter.

For Ω a subset of R2, f a composition of any of the functions of Definitions 8.1(a)–(d),

f(Ω) ≡ {f(J) |J is in Ω}.

Definition 8.2. The actions of translation, rotation and reflection in Definitions 8.1(a)–(c) and
DRAWING 8.5(a)–(c) at the end of this chapter are called rigid motions.

Theorem 8.3. (a) Rigid motions preserve length, angle measure, and area.

By this, we mean that, if f is a function representing (a), (b), or (c) of Definitions 8.1, then, for
any vectors ~a,~b, polygon Ω,

(i) the length of f(~a) equals the length of ~a; and

(ii) the angle between f(~a) and f(~b) and the angle between ~a and ~b have equal measures; and

(iii) the area of f(Ω) equals the area of Ω.

(b) Magnification by R preserves angle, multiplies length by R, and multiplies area by R2.

By this, we mean that, if f is the function representing (d) of Definitions 8.1, then, for any
vectors ~a,~b, polygon Ω,

(i) the length of f(~a) equals R times the length of ~a; and

(ii) the angle between f(~a) and f(~b) and the angle between ~a and ~b have equal measure; and

(iii) the area of f(Ω) equals R2 times the area of Ω.

See DRAWING 8.5 at the end of this chapter.

Definitions 8.4. Two sets are said to be congruent if one set may be obtained from the other by
applying rigid motions.

Two sets are said to be similar if one set may be obtained from the other by applying any of
the motions (a)–(d) of Definition 8.1 or DRAWING 8.5(a)–(d) at the end of this chapter.

If f is a composition of the motions (a)–(d) in Definitions 8.1 and Ω1 and Ω2 are subsets of R2

such that f(Ω1) = Ω2 (so that Ω1 and Ω2 are similar) and ω is a subset of Ω1 then f(ω) is the subset
of Ω2 corresponding to ω and the measure of f(ω) corresponds to the measure of ω.

By Theorem 8.3, congruent sets have corresponding lengths, angle measures, and areas in com-
mon, while similar objects have corresponding angle measures in common; see Theorem 10.1(b) for
a converse of the latter assertion. Here is a useful consequence of similarity for triangles.

Proposition 8.5. If two triangles are similar, then ratios of corresponding lengths of sides are
equal. That is, suppose T1 and T2 are triangles and f is a composition of (a)–(d) in Definitions 8.1,
with T2 = f(T1). Further suppose that ~S1 and ~S2 are two sides of T1. Then

‖~S1‖
‖~S2‖

=
‖f(~S1)‖
‖f(~S2)‖

.

It can be shown that rigid motions are the only functions from the plane into itself that preserve
length, angle measure, and area. See Remark 9.14, which shows this under the assumption that the
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function is linear, which is equivalent to being represented as matrix multiplication (see Definition
9.3).

Thus congruence is equivalent to having corresponding lengths, angle measures, and areas in
common. Congruent sets are precisely the ones we think of as being the same, as described in the
first two paragraphs of this chapter. Simple identification of congruence and similarity will be the
theme of Chapter X.
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CHAPTER IX: Proof of Theorem 8.3, via Matrices.

We will study rigid motions by representing them (except for translation) as multiplication of
vectors by certain matrices (see Definitions 9.1 and 9.2).

Definitions 9.1. A 2×2 (“two by two”) matrix is a rectangular array of two rows and two columns

A ≡
[
a11 a12

a21 a22

]
, where a11, a12, a21, a22 are numbers.

The rows of A are
[
a11 a12

]
and

[
a21 a22

]
; the columns are

[
a11

a21

]
and

[
a12

a22

]
.

A 2× 1 matrix is a column of two numbers
[
a1

a2

]
.

We will write
[
~a ~b

]
≡
[
a1 b1
a2 b2

]
and

[
~a
~b

]
≡
[
a1 a2

b1 b2

]
. Either of those matrices can be thought of

as the pair of vectors ~a ≡< a1, a2 >,~b ≡< b1, b2 > .

Definition 9.2. We may multiply some matrices. If A ≡
[
a11 a12

a21 a22

]
, B ≡

[
b11 b12
b21 b22

]
and x and y

are numbers, then (see Definition 4.1)

AB ≡
[
(< a11, a12 > · < b11, b21 >) (< a11, a12 > · < b12, b22 >)
(< a21, a22 > · < b11, b21 >) (< a21, a22 > · < b12, b22 >)

]
and A

[
x
y

]
≡
[
(< a11, a12 > · < x, y >)
(< a21, a22 > · < x, y >)

]
.

In the slicker language from Definition 9.1,[
~a1

~a2

] [
~b1 ~b2

]
≡

[
(~a1 ·~b1) (~a1 ·~b2)
(~a2 ·~b1) (~a2 ·~b2)

]
and

[
~a1

~a2

] [
x
y

]
≡
[
~a1· < x, y >
~a2· < x, y >

]
.

Definition 9.3. Our interest in matrices is using them to define functions from R2 to R2. If A is a
2 × 2 matrix, we want the function fA to represent multiplication by A. Complicated appearances
arise from the fact that we now have three ways (not including complex numbers) to arrange an
ordered pair of numbers x, y :

(x, y), < x, y >, and
[
x
y

]
.

Define fA : R2 → R2 by

fA(x, y) = (x′, y′), where
[
x′

y′

]
≡ A

[
x
y

]
.

We may also apply fA to vectors:

fA(< v1, v2 >) =< v′1, v
′
2 >, where

[
v′1
v′2

]
≡ A

[
v1
v2

]
.

In either case, A is called the standard matrix for fA.

We should check that fA applied to points is consistent with fA applied to vectors. The definition
of fA on R2 necessitates the following definition of fA applied to directed line segments: if

−→
IT is a

directed line segment representing the vector ~v, define

fA(
−→
IT ) ≡

−−→
I ′T ′, where I ′ ≡ fA(I), T ′ ≡ fA(T ).

Since T = I + ~v, it is not hard to show that

T ′ ≡ fA(T ) = fA(I + ~v) = fA(I) + fA(~v) ≡ I ′ + fA(~v),
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so that the components of
−−→
I ′T ′ are fA(~v); thus, when two directed line segments represent the same

vector ~v, their images both represent the vector fA(~v), producing an unambiguous definition of fA
applied to vectors, as desired.

With the standard matrices for rigid motions (to be determined as in Remark 9.13) in mind,
our goal now is the relationships between A and fA.

Definition 9.4. det is short for determinant:

det
[
a1 b1
a2 b2

]
≡ a1b2 − a2b1.

Theorem 9.5. If A and B are 2× 2 matrices, then det(AB) = (det A)(det B).

Proof: Denote A ≡
[
a11 a12

a21 a22

]
and B ≡

[
b11 b12
b21 b22

]
. Then

det(AB) = det
[
(< a11, a12 > · < b11, b21 >) (< a11, a12 > · < b12, b22 >)
(< a21, a22 > · < b11, b21 >) (< a21, a22 > · < b12, b22 >)

]
= (a11b11 + a12b21)(a21b12 + a22b22)− (a21b11 + a22b21)(a11b12 + a12b22) =

(a11b11a21b12+a11b11a22b22+a12b21a21b12+a12b21a22b22)−(a21b11a11b12+a21b11a12b22+a22b21a11b12+a22b21a12b22)
= (a11b11a22b22 + a12b21a21b12)− (a21b11a12b22 + a22b21a11b12),

while

(detA)(detB) = (a11a22−a21a12)(b11b22−b21b12) = a11a22b11b22−a11a22b21b12−a21a12b11b22+a21a12b21b12.

Amazingly, they appear to be the same. �

Proposition 9.6. If I is a point and ~a and ~b are vectors, then the area of the triangle with vertices
I, I + ~a, I +~b is 1

2 |det
[
~a ~b

]
|.

Proof: If ~a and ~b are parallel, we leave it to the reader to show that det
[
~a ~b

]
is zero. For the

remainder of the proof, assume ~a and ~b are not parallel.

By Proposition APP1.3 and Proposition APP1.5, combined with Theorem 9.5 and the fact that
the standard matrices for reflection thru an axis (see f and g in Definitions APP1.2) both have
determinants (−1), we may assume that I is the origin and ~a ≡< a1, a2 > is in the first quadrant;
that is, both a1 and a2 are nonnegative.

First, we will show this proposition when ~b is horizontal; that is, ~b =< b1, 0 >, for some nonzero
real b1.

Note that here |det
[
~a ~b

]
| = |b1a2| = (base)(height).

There are three cases: (1) b1 > a1; (2) 0 < b1 ≤ a1; (3) b1 < 0. See DRAWINGS 9.1 at the end of
this chapter.

Using Corollary APP1.7:

in case (1), the area of our triangle is 1
2a2a1 + 1

2a2(b1 − a1) = 1
2a2b1 = 1

2 |a2b1|;

in case (2), the area of our triangle is 1
2a2a1 − 1

2a2(a1 − b1) = 1
2a2b1 = 1

2 |a2b1|;

in case (3), the area of our triangle is 1
2a2(a1 − b1)− 1

2a2a1 = − 1
2a2b1 = 1

2 |a2b1|.

Now we remove all restrictions on ~b, except that we will separately consider b2 = a2 and b2 6= a2.
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If b2 = a2, then, breaking into the same three cases presented just before DRAWINGS 9.1 at
the end of this chapter, and using Corollary APP1.7 again and Definitions 2.4(ii) (see DRAWINGS
9.2 at the end of this chapter):

in case (1), the area of our triangle is

a2b1 −
1
2
a1a2 −

1
2
a2b1 =

1
2
a2(b1 − a1) = |1

2
det
[
a1 b1
a2 a2

]
| = 1

2
|det

[
~a ~b

]
|;

in case (2), the area of our triangle is

a2a1 −
1
2
a2b1 −

1
2
a2a1 =

1
2
a2(a1 − b1) = |1

2
det
[
a1 b1
a2 a2

]
| = 1

2
|det

[
~a ~b

]
|;

in case (3), the area of our triangle is

a2(a1 − b1)−
1
2
|b1|a2 −

1
2
a1a2 = a2a1 − a2b1 +

1
2
b1a2 −

1
2
a1a2 = |1

2
det
[
a1 b1
a2 a2

]
| = 1

2
|det

[
~a ~b

]
|.

See DRAWING 9.2 at the end of this chapter.

If b2 6= a2, let c be the x intercept of the line thru (a1, a2) and (b1, b2) and let ~c ≡< c, 0 > .

By the first part of our proof, after a reflection thru the x axis if necessary (see Proposition
APP1.5) the area of the triangle formed by ~a and ~c, call it A~a, is 1

2 |c|a2 and the area of the triangle
formed by ~b and ~c, call it A~b, is 1

2 |cb2|. See DRAWINGS 9.3 at the end of this chapter.

As drawn in DRAWINGS 9.4 at the end of this chapter, we may write the area of our triangle
as either a sum (if b2 < 0) of A~a and A~b, or (if b2 > 0) the absolute value of the difference between
A~a and A~b.

We claim the area of the triangle formed by ~a and ~b is 1
2 |c(b2 − a2)|. We will show this claim

first for b2 positive, then for b2 negative (b2 = 0 was covered at the beginning of the proof).

If b2 > 0, then our area equals
1
2

[|cb2| − |ca2|] =
1
2

[|c|(b2 − a2)] =
1
2
|c(b2 − a2)| if b2 > a2

or
1
2

[|ca2| − |cb2|] =
1
2

[|c|(a2 − b2)] =
1
2
|c(b2 − a2)| if a2 > b2.

If b2 < 0, then our area is
1
2

(|ca2|+ |cb2|) =
1
2

(|c|a2 − |c|b2) =
1
2
|c|(a2 − b2) =

1
2
|c(b2 − a2)|.

See DRAWING 9.4 at the end of this chapter.

This proves our claim about the area of the triangle formed by ~a and ~b, in terms of c. To see
that it is the area given in the statement of the proposition, we must solve for c:

The line thru (a1, a2) and (b1, b2) is

y = a2 +
(

(b2 − a2)
(b1 − a1)

(x− a1)
)
,

so

0 = a2 +
(

(b2 − a2)
(b1 − a1)

(c− a1)
)
,

hence

c = a1 − a2

(
(b1 − a1)
(b2 − a2)

)
,
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hence
c(b2 − a2) = a1(b2 − a2)− a2(b1 − a1) = a1b2 − a2b1 = det

[
~a ~b

]
,

concluding the proof. �

Proposition 9.7. If I is a point and ~a and ~b are vectors, then the area of the parallelogram with
vertices I, I + ~a, I +~b, I + ~a+~b is |det

[
~a ~b

]
|.

Proof: This follows from Proposition 9.6 and Corollary APP1.6. �

Theorem 9.8. For Ω (the interior of) a polygon, the area of fA(Ω) ≡ {fA(J) |J is in Ω} equals

|det(A)| (area of Ω) .

Proof: By Propositions 9.6 and 9.7, since any polygon is a union of triangles (asserted in Definitions
2.3), we may assume Ω is (the interior of) a parallelogram. Let I,~a,~b be as in Corollary 3.4; that is,

Ω = {I + s~a+ t~b |, 0 ≤ s, t ≤ 1}.

Since fA(I+s~a+ t~b) = fA(I)+sfA(~a)+ tfA(~b), fA(Ω) is a parallelogram formed by fA(~a) and fA(~b),
thus, by Proposition 9.7 and Theorem 9.5, the area of fA(Ω) is

|det
[
fA(~a) fA(~b)

]
| = |det

(
A
[
~a ~b

])
| = | (det(A))

(
det
([
~a ~b

]))
|

= |det(A)| |
(
det
([
~a ~b

]))
| = |det(A)| (area of Ω) ,

by Proposition 9.7. �

This gives a geometric picture of determinant: |det(A)| is a magnification factor for multi-
plication by the matrix A.

Of particular interest is to have the magnification factor equal to one; this is equivalent to
preservation of area.

Corollary 9.9. If A is a 2×2 matrix, then |det(A)| = 1 if and only if multiplication by A preserves
area; that is, for Ω a polygon, fA(Ω) ≡ {fA(J) |J is in Ω} has the same area as Ω.

Definition 9.10. A matrix is orthogonal if its columns are orthogonal unit vectors (see Definitions
2.4 and Definition 4.3). That is, A ≡

[
~a ~b

]
is orthogonal if ~a and ~b are orthogonal unit vectors.

Theorem 9.11. If A is a 2 × 2 matrix, then A is orthogonal if and only if multiplication by A
preserves length and angle measure; that is, for any vectors ~x, ~y, the measure of the angle between
fA(~x) and fA(~y) equals the measure of the angle between ~x and ~y and the length of fA(~x) equals
the length of ~x.

Proof: By 4.5(e) and Theorem 6.9, preservation of length and angle measure is equivalent to

(fA(~x)) · (fA(~y)) = ~x · ~y,
for all ~x, ~y in R2.

Denote A ≡
[
a1 b1
a2 b2

]
≡
[
~a ~b

]
. Then, for any ~x, ~y in R2,

fA(~x) =< a1x1 + b1x2, a2x1 + b2x2 >, fA(~y) =< a1y1 + b1y2, a2y1 + b2y2 >,

thus
(fA(~x)) · (fA(~y)) = (a1x1 + b1x2) (a1y1 + b1y2) + (a2x1 + b2x2) (a2y1 + b2y2)

= a2
1x1y1 + a1b1x1y2 + b1a1x2y1 + b21x2y2 + a2

2x1y1 + a2b2x1y2 + b2a2x2y1 + b22x2y2

= (a2
1 + a2

2)x1y1 + (b21 + b22)x2y2 + (a1b1 + a2b2)x1y2 + (b1a1 + b2a2)x2y1
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= ‖~a‖2x1y1 + ‖~b‖2x2y2 + (~a ·~b)x1y2 + (~b · ~a)x2y1,

which equals x1y1 + x2y2 ≡ ~x · ~y for all ~x, ~y in R2 if and only if

‖~a‖ = 1 = ‖~b‖ and ~a ·~b = 0.

This is precisely the definition of A being orthogonal (see Definitions 9.10 and 4.3). �

Corollary 9.12. If multiplication by a matrix A preserves length and angle measure, then it also
preserves area.

Proof: By Theorem 9.11, the first column of A is a unit vector, thus (see Definitions 6.1) it equals[
cosψ
sinψ

]
, for some ψ between 0 and 2π. Also by Theorem 9.11, the second column is a unit vector

orthogonal to the first column, thus it equals
[
− sinψ
cosψ

]
, or

[
sinψ
− cosψ

]
(see DRAWING 9.5 at the

end of this chapter);

that is, A equals either [
cosψ − sinψ
sinψ cosψ

]
or
[
cosψ sinψ
sinψ − cosψ

]
;

in either case, |detA| = 1, so by Corollary 9.9, multiplication by A preserves area. �

Remark 9.13. Some comments here about choosing a standard matrix (see Definition 9.3) for a
function will be helpful for the proof of Theorem 8.3. Note that[

a11 a12

a21 a22

] [
1
0

]
=
[
a11

a21

]
and

[
a11 a12

a21 a22

] [
0
1

]
=
[
a12

a22

]
.

This tells us that, given a function f : R2 → R2, a matrix A such that f = fA must have its first
column equal to f((1, 0)) and its second column equal to f((0, 1)), where f((1, 0)) and f((0, 1)) are
arranged as columns.

9.14. Proof of Theorem 8.3: The preservation of length, angle measure, and area under trans-
lation may be found in Propositions APP1.3 and APP2.3(a); recall (Definitions 2.10) that angle
measure is a certain length

This means we may assume, for the remainder of the proof, that

(i) all circles involved in rotation (Definition 8.1(b)) are centered at the origin; and

(ii) all lines involved in reflection (Definition 8.1(c)) go thru the origin.

This allows us to represent Definitions 8.1(b), (c), and (d) with matrices, as in Definition 9.3;
that is, each of (b), (c), and (d) will be written as fA, with standard matrix A chosen, following
Remark 9.13, in the following ways.

CLAIM 1. The motion in (b) is fA, for A ≡
[
cos θ − sin θ
sin θ cos θ

]
.

CLAIM 2. There’s a real number φ so that the motion in (c) is fA, for A ≡
[
cos(2φ) sin(2φ)
sin(2φ) − cos(2φ)

]
;

< cosφ, sinφ > is then a direction vector for the line ` in (c).

CLAIM 3. The motion in (d) is fA, with A ≡ R

[
1 0
0 1

]
.

Most of the proof of Theorem 8.3 involves proving these three claims about Definitions 8.1(b),
(c), and (d).
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Proof of CLAIM 1. Write an arbitrary point (x, y) in R2, via Definitions 6.1 or Definition 6.2,
in the vector equivalent of polar form (Definition 1.15; see Lemma 2.8 and Glib Equivalences 1.16)
(r cos θ0, r sin θ0), for some real θ0, with r ≡ ‖ < x, y > ‖. Multiply[

cos θ − sin θ
sin θ cos θ

] [
r cos θ0
r sin θ0

]
=
[
r(cos θ cos θ0 − sin θ sin θ0)
r(sin θ cos θ0 + cos θ sin θ0)

]
=
[
r cos(θ + θ0)
r sin(θ + θ0)

]
,

by Proposition 6.4(i) and (ii); this is (r cos θ0, r sin θ0) rotated θ radians counterclockwise (see the
complex form of Definitions 8.1(b)), as desired.

Proof of CLAIM 2. A “motion,” in the sense of Definitions 8.1, that does not preserve length or
area is the projection of Definition 4.6.

Our first step will be to describe reflection in terms of projection. Let ` be the line of Definitions
8.1(c), assumed (see beginning of proof of Theorem 8.3) to be going thru the origin.

Define P : R2 → R2 by, for any I in R2,

I ′′ ≡ P (I) ≡ proj`(I)

(see Definition 4.6 and DRAWING 9.6 at the end of this chapter), the projection of I onto the line
`.

Comparing DRAWING 9.6 at the end of this chapter with DRAWING 8.3 at the end of Chapter
VIII, we see that

R(I)− P (I) =
−→
II ′′ =

−−→
I ′′I ′ = P (I)− I;

that is,
R− P = P − Id,

where Id is the identity map Id(I) ≡ I, so that

R = 2P − Id (∗).

Since Id has standard matrix
[
1 0
0 1

]
, the standard matrix for P will lead to the standard matrix

for R.

Let ~v be a direction vector for ` of norm one. By Lemma 2.8 and Definitions 6.1, this means
there is a real number φ so that

~v =< cosφ, sinφ > .

By Corollary 4.12, for any real x, y,

P ((x, y)) = (< x, y > · < cosφ, sinφ >) < cosφ, sinφ >=< (cosφ)2x+(cosφ sinφ)y, (cosφ)(sinφ)x+(sinφ)2y >

=
[

(cosφ)2 (cosφ)(sinφ)
(cosφ)(sinφ) (sinφ)2

] [
x
y

]
;

that is, [
(cosφ)2 (cosφ)(sinφ)

(cosφ)(sinφ) (sinφ)2

]
is the standard matrix for P.

By (*) above, 6.3(v), and 6.4(i) and (ii), this implies that the standard matrix for R is

A = 2
[

(cosφ)2 (cosφ)(sinφ)
(cosφ)(sinφ) (sinφ)2

]
−
[
1 0
0 1

]
=
[

2(cosφ)2 − 1 2(cosφ)(sinφ)
2(cosφ)(sinφ) 2(sinφ)2 − 1

]
=
[
(cosφ)2 − (sinφ)2 2(cosφ)(sinφ)

2(cosφ)(sinφ) (sinφ)2 − (cosφ)2

]
=
[
cos(2φ) sin(2φ)
sin(2φ) − cos(2φ)

]
Proof of CLAIM 3. This is immediate:

R

[
1 0
0 1

] [
x
y

]
=
[
Rx
Ry

]
,
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for any real x, y.

The proof of Theorem 8.3(a) now follows from Corollary 9.12 and Theorem 9.11, applied to[
cos θ − sin θ
sin θ cos θ

]
and

[
cos(2φ) sin(2φ)
sin(2φ) − cos(2φ)

]
while the proof of Theorem 8.3(b) follows from Theorem 9.8 (for area) and the fact that

< Rx1, Ry1 > · < Rx2, Ry2 >= R2 (< x1, y1 > · < x2, y2 >) ,

for any real x1, x2, y1, y2 (see 4.5(e) and Theorem 6.9). �

Remark 9.15. The standard matrices for reflection and rotation are surprisingly similar. The
standard matrix for reflection is the same as the standard matrix for counterclockwise rotation by
2φ, except that the second column is multiplied by (−1).

As we mentioned in the proof of Corollary 9.12, if A is the standard matrix for a function from
R2 to R2 that preserves length and angle measure, then A equals, for some ψ, either[

cosψ − sinψ
sinψ cosψ

]
,

representing counterclockwise rotation by ψ, or[
cosψ sinψ
sinψ − cosψ

]
,

representing reflection thru the line thru the origin that makes an angle of measure 1
2ψ with the x

axis.

It is surprising that such a trivial-appearing algebraic change (multiplying the second column
by (−1)) makes such a profound geometric change (rotation to reflection).
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CHAPTER X: Congruence and Similarity of Triangles.

We would like simple (meaning requiring as little information as possible) ways of determining
when two triangles are congruent or similar (Definitions 8.4). Theorem 10.1 is sufficient for our
applications in Chapters XI, XII, and XIII. Theorems 10.4 and 10.6 address natural questions that
arise from Theorem 10.1 (see 10.3 and 10.5), while Theorem 10.7 discusses information (two sides
and an angle not between the two sides) with more uncertain conclusions; in general, there might
be no such triangle, precisely one (up to congruence) or two (up to congruence) possible triangles
satisfying the information given.

Here (Theorem 10.1) are the traditional sufficient conditions for congruence, along with their
traditional acronyms (SAS, SSS, and AAS). Those acronyms imply the order of angles or sides:
SAS means the angle with specified measure is between the two sides whose lengths are specified,
while AAS means the side whose length is specified might not be between the angles whose lengths
are specified.

Theorem 10.1. Suppose T1 and T2 are triangles, T1 has sides S1, S2, and S3, T2 has sides S4, S5,
and S6, and, for j = 1, 2, 3, 4, 5, 6, θj is the measure of the angle opposite Sj . See DRAWING 10.1
at the end of this chapter.

(a) Any one of the following conditions (SAS, SSS, AAS) implies that T1 and T2 are congruent.

SAS. ‖S1‖ = ‖S4‖, ‖S2‖ = ‖S5‖ and θ3 = θ6. See DRAWING 10.2 at the end of this chapter.

Informally, agreement on two sides and the angle between the two sides implies congruence.

SSS. ‖S1‖ = ‖S4‖, ‖S2‖ = ‖S5‖, and ‖S3‖ = ‖S6‖. See DRAWING 10.3 at the end of this chapter.

Informally, agreement on all sides implies congruence.

AAS. ‖S1‖ = ‖S4‖, θ1 = θ4, and θ2 = θ5. See DRAWING 10.4 at the end of this chapter.

Informally, agreement on two angles and a side implies congruence; note that AAS follows from
ASA, by Proposition 3.9.

(b) AAA or AA. θ1 = θ4, θ2 = θ5, and θ3 = θ6 (the last equality follows automatically from the
first two, by Proposition 3.9) implies that T1 and T2 are similar. See DRAWING 10.5 at the end of
this chapter.

Informally, agreement of all angles implies similarity.

Proof: SAS: Suppose two triangles T1 and T2 each have a side of length a and a side of length
b, with the measure of the angle between them equal to ψ; that is, ‖S1‖ = a = ‖S4‖, ‖S2‖ = b =
‖S5‖, θ3 = θ6 = ψ in DRAWING 10.1 at the end of this chapter.

We claim that both triangles are congruent to the triangle, call it T3, with vertices (0, 0), (a, 0),
and b(cosψ, sinψ). We will describe this with T1; the same argument applies to T2. See DRAWINGS
10.6 at the end of this chapter.

If ψ is the measure of the clockwise angle from S2 to S1, then a translation and rotation makes
T1 congruent to T3. See DRAWINGS 10.7 at the end of this chapter.

If ψ is the measure of the counterclockwise angle from S2 to S1, then a reflection (e.g., through
the side S1) makes T1 congruent to the triangle at the beginning of DRAWINGS 10.7, which we
have already shown is congruent to T3, thus T1 is congruent to T3. See DRAWINGS 10.8 at the end
of this chapter.

Either way, this proves our claim. Since T1 and T2 are each congruent to T3, it follows that T1

is congruent to T2, as desired. �
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SSS: Denoting c ≡ ‖S3‖, a ≡ ‖S1‖, b ≡ ‖S2‖, by the Law of Cosines,

c2 = a2 + b2 − 2ab cos θ3,

thus

θ3 = cos−1

[
a2 + b2 − c2

2ab

]
= θ6,

and we may apply SAS. �

AAS: Since the sum of the measures of the angles in each triangle is π, we also have

θ3 = θ6,

thus, by the Law of Sines,
‖Sj‖
sin θj

is constant, for j = 1, 2, 3, 4, 5, 6, so that we may apply SSS.

AAA: Let R ≡ ‖S1‖
‖S4‖ , and let T3 be T2 magnified by R (see Definitions 8.1(d)) By AAS, T3 is

congruent to T1, thus by Theorem 8.3(b) and Definitions 8.4, T2 is similar to T1. �

Example 10.2. Here is a different proof of Theorem 7.10(d) → (a), (b), and (c). See DRAWINGS
10.9 at the end of this chapter, where the hypothesis of (d) implies the agreement on a side and two
angles of triangles PSR and SQR, so that AAS implies the congruence of triangles PSR and SQR,
which implies all of (a)–(d) in Theorem 7.10. �
Discussion 10.3. Another way to view SAS, SSS, and AAS is in terms of what information is
sufficient to uniquely determine a triangle, up to congruence. Most of the following is a restatement
of Theorem 10.1. We will put off until later (Theorem 10.7) the most interesting case, not mentioned
in Theorem 10.1, of specifying two sides and the measure of an angle not between the two sides.

Theorem 10.4. Each of the following sets of conditions (with no additional conditions) is sufficient
to uniquely specify a triangle (if it exists; see Theorem 10.6); that is, specify all measures of angles
and lengths of sides, up to congruence.

(a) SAS; that is, the lengths of two sides and the measure of the interior angle between them, is
specified.

(b) SSS; that is, the length of each side is specified.

(c) AAS; that is, the length of a side and the measures of two angles are specified.

(d) Specify numbers a, b, c such that the triangle is formed by vectors ~a,~b such that ‖~a‖ = a, ‖~b‖ = b

and ~a ·~b = c, as in DRAWING 2.8(a) at the end of Chapter II.

(e) Specify vectors ~a,~b, such that the triangle is formed by ~a and ~b, as in DRAWING 2.8(a) at the
end of Chapter II.

Proof: The constructions for (a)–(c) are contained in the proof of Theorem 10.1(a).

(d) is equivalent to (a), by Theorem 6.9.

The specifications of (e) clearly imply those of (d), which we have already shown specifies a unique
triangle. �

More Discussion 10.5. Another concern, that arguably should precede uniqueness of triangles as
in Discussion 10.3 and Theorem 10.4, is the existence of a triangle having specified sides and angles.

At first glance, there appear to be at least six numbers involved in describing a triangle: three
(measures of) angles and three (lengths of) sides. But Theorem 10.4 implies that these six numbers
cannot be chosen independently; in Theorem 10.4(a)–(d), choosing only three of those six numbers
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uniquely determines the remaining numbers. In fact, even those three numbers in SAS, SSS, and
AAS cannot be chosen completely independently.

Theorem 10.6. Each of (a)–(e) below contains necessary and sufficient restrictions on the corre-
sponding specification in Theorem 10.4, so that the specified triangle exists.

(a) All specified lengths are positive and, denoting by θ the specified measure of the specified angle,
0 < θ < π.

(b) All specified lengths are positive and each side has length less than the sum of the lengths of the
other sides.

(c) The specified length and both specified angle measures are positive and the sum of the two
specified angle measures is less than π.

(d) The fraction | cab | is less than 1 and both a and b are greater than zero.

(e) The vectors ~a and ~b are not parallel.

Proof: (b) is certainly geometrically believable. To prove it is necessary and sufficient algebraically,
let s1, s2, s3 be the lengths of the sides of the desired triangle, and for j = 1, 2, 3, let θj be the measure
of the angle opposite the side of length sj . Note that we get measures of angles from lengths via the
Law of Cosines; e.g., to get θ1, use

s21 = s22 + s23 − 2s2s3 cos θ1,

so that, since | cos θ1| < 1, θ1 exists if and only if

−1 <
s22 + s23 − s21

2s2s3
< 1 ⇐⇒ −2s2s3 < s21−(s22+s23) < 2s2s3 ⇐⇒ (s2−s3)2 < s21 < (s2+s3)2 ⇐⇒

|s2 − s3| < s1 < (s2 + s3) ⇐⇒ −s1 < s2 − s3 < s1 and s1 < s2 + s3 ⇐⇒
s2 < s1 + s3, s3 < s1 + s2 and s1 < s2 + s3;

that is, θ1 exists if and only if each side has length less than the sum of the lengths of the other
sides. An identical argument shows that same result for θ2 and θ3.

For the sufficiency of (a), (c), (d), and (e), we will construct vectors ~a,~b as in DRAWING 2.8(a)
at the end of Chapter II, with ~a ≡< a, 0 > on the positive x axis, ~b in the upper halfplane y > 0, so
that ~a,~b, and (~a−~b) will form the sides of our desired triangles; see DRAWINGS 10.10 at the end
of this chapter.

(e) The vectors ~a,~b and (~a − ~b) will enclose an area if and only if ~a and ~b are not parallel (see
DRAWING 2.8(a) at the end of Chapter II).

(d) and (a). Let
~a ≡< a, 0 >, ~b ≡ b < cos θ, sin θ >,

where, for (a), lengths a and b and angle measure θ are specified, and, for (d), θ ≡ cos−1( cab ) (see
Theorem 6.9).

(c) Let s3 be the specified length of a side. Since the sum of measures of the angles in the triangle
is π, our condition guarantees that all measures of angles are specified; denote said measures by
θj , j = 1, 2, 3, where θ3 is the measure of the angle opposite the side of length s3. Worrying about
the Law of Sines tells us to define

sj ≡ (sin θj)
(

s3
sin θ3

)
,

for j = 1, 2.

In DRAWINGS 10.10 at the end of this chapter, let ~a ≡< s3, 0 >,~b ≡ s2 < cos θ1, sin θ1 >, as
in (d) and (a) with a ≡ s3, θ ≡ θ1. The extra twist needed here is to show that

(~a−~b) = s1 < cos(θ2),− sin(θ2) > (∗),
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so that we will have our specified angle measures; see DRAWINGS 10.11 at the end of this chapter,
where we have drawn in both the known angle measure θ1 and the as yet unknown angle measures
ψ3 and ψ2.

The calculation for (*) follows:
~b+ s1 < cos(θ2),− sin(θ2) >= s2 < cos(θ1), sin(θ1) > + s1 < cos(θ2),− sin(θ2) >

= (sin θ2)
(

s3
sin θ3

)
< cos(θ1), sin(θ1) > + (sin θ1)

(
s3

sin θ3

)
< cos(θ2),− sin(θ2) >

=
s3

sin(θ3)
[< sin(θ2) cos(θ1) + sin(θ1) cos(θ2), 0 >] =

s3
sin(θ3)

< sin(θ2 + θ1), 0 >,

by Proposition 6.4(ii); finally, since θ1 + θ2 + θ3 = π, we have

~b+ s1 < cos(θ2),− sin(θ2) >=
s3

sin(θ3)
< sin(π − θ3), 0 >=< s3, 0 >≡ ~a,

by 6.3(ii) and (iv), and (*) follows, as in DRAWINGS 10.11 at the end of this chapter.

Now we will use the dot product to determine the measure ψ3 of the angle opposite ~a :

cos(ψ3) =
−s2 < cos(θ1), sin(θ1) > · s1 < cos(θ2),− sin(θ2) >
‖s2 < cos(θ1), sin(θ1) > ‖‖s1 < cos(θ2),− sin(θ2) > ‖

= − < cos(θ1), sin(θ1) > · < cos(θ2),− sin(θ2) >

= − [cos(θ1) cos(θ2)− sin(θ1) sin(θ2)] = − cos(θ1 + θ2),
by Proposition 6.4(i), so that, since θ1 + θ2 + θ3 = π,

cos(ψ3) = − cos(π − θ3) = cos(θ3),

by 6.3(i) and (iii).
This implies that ψ3 = θ3, so that ψ2 = π − (θ3 + θ1) = θ2, and we have the desired triangle.

See DRAWINGS 10.11 at the end of this chapter.

The necessity of (a), (c), (d), and (e) is quickly addressed. The necessity of (e) was shown
simultaneously with the sufficiency. The necessity of (d) is the Cauchy inequality (HWVI.1). The
necessity of both (a) and (c) follow from the fact that the sum of measures of angles in a triangle is
π. �

Specifying two sides and an angle is much different when the angle is not between the two sides.

Theorem 10.7. (SSA) Suppose, for a potential triangle, the lengths of two sides and the measure
of an angle not between the two sides are specified. Denote by θ1 the specified angle measure, with
0 < θ1 < π, by s1 the length of the side opposite θ1, and by s2 the other specified length. See
DRAWING 10.12 at the end of this chapter.

Then the following table gives the number of triangles (0, 1, or 2), up to congruence, that have
the specified lengths and angle measures.

θ1 <
π
2 θ1 ≥ π

2
−−−−−−−−−−− −−−−−−−−−−− −−−−−−−−−−−

s1 < s2 sin θ1 0 0
−−−−−−−−−−− −−−−−−−−−−− −−−−−−−−−−−

s1 = s2 sin θ1 1 0
−−−−−−−−−−− −−−−−−−−−−− −−−−−−−−−−−

s2 > s1 > s2 sin θ1 2 0
−−−−−−−−−−− −−−−−−−−−−− −−−−−−−−−−−

s1 = s2 1 0
−−−−−−−−−−− −−−−−−−−−−− −−−−−−−−−−−

s1 > s2 1 1
−−−−−−−−−−− −−−−−−−−−−− −−−−−−−−−−−
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Proof: If the desired triangle exists, then s3, from DRAWING 10.12 at the end of this chapter,
must be positive and satisfy the Law of Cosines

s21 = s22 + s23 − 2s2s3 cos θ1;

this may be written as a quadratic equation in the variable s3:

s23 − (2s2 cos θ1)s3 + (s22 − s21) = 0 (∗).
Conversely, if there exists a positive real solution of (*), call it s3, then Theorem 10.6(a) implies the
existence of a triangle with sides of lengths s2 and s3 and angle of measure θ1 between the sides of
lengths s2 and s3; the remaining side would then have length s1, as in DRAWING 10.12 at the end
of this chapter, because the Law of Cosines above, that (*) is equivalent to, specifies s1 as its unique
positive solution

s1 =
√
s22 + s23 − 2s2s3 cos θ1.

Thus a triangle with the specified lengths and angle measures corresponds to a solution, s3, of
(*) that is real and positive. Throughout the proof, we will refer to such solutions.

By the quadratic formula (Definitions 0.6), solutions of (*) have the form

s3 =
1
2

[
2s2 cos θ1 ±

√
(2s2 cos θ1)2 − 4(s22 − s21)

]
=
[
s2 cos θ1 ±

√
(s2 cos θ1)2 − (s22 − s21)

]
=
[
s2 cos θ1 ±

√
s21 − (s2 sin θ1)2

]
.

Denote by s+3 and s−3 the two solutions

s+3 =
[
s2 cos θ1 +

√
s21 − (s2 sin θ1)2

]
, s−3 =

[
s2 cos θ1 −

√
s21 − (s2 sin θ1)2

]
.

We will find it convenient to begin with some preliminary factoids:

(1) s+3 and s−3 are both not real if and only if at least one of s+3 and s−3 is not real if and only if
s1 < s2 sin θ1.

(2) s+3 = s−3 if and only if s1 = s2 sin θ1.

(3) |s2 cos θ1| <
√
s21 − (s2 sin θ1)2 if and only if s1 > s2.

Proof of (1): (1) is equivalent to
(
s21 − (s2 sin θ1)2

)
being negative, which is equivalent to

s21 < (s2 sin θ1)2;

since s1, s2, and sin θ1 are positive, this is equivalent to s1 < s2 sin θ1.

Proof of (2): (2) is equivalent to
(
s21 − (s2 sin θ1)2

)
equalling zero; as in (1), this is equivalent to

s1 = s2 sin θ1.

Proof of (3): |s2 cos θ1| <
√
s21 − (s2 sin θ1)2 if and only if

s22 cos2 θ1 < s21 − s22 sin2 θ1 ⇐⇒ s21 > s22(cos2 θ1 + sin2 θ1);

by 6.3(v) and the positivity of s1 and s2, this is equivalent to s1 > s2.

Now let’s investigate the entries (0, 1, or 2) in the table stated in the theorem via solutions of
(*).

First, note that Factoid (1) gives us the first row of the desired table: s1 < s2 sin θ1 implies no
real solutions of (*).

For the remainder of the proof, assume s1 ≥ s2 sin θ1. Factoid (1) implies that we have a real,
positive solution of (*) if and only if s+3 > 0, and that solution is unique if and only if, in addition,
either s−3 ≤ 0 or s−3 = s+3 .
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First let’s address the remaining rows of the right column of the table we wish to prove: assume
θ1 ≥ π

2 . This is equivalent to cos θ1 ≤ 0, so that we may now rewrite Factoid (3) as follows. Since
s2 cos θ1 ≤ 0, |s2 cos θ1| = −s2 cos θ1, thus

|s2 cos θ1| <
√
s21 − (s2 sin θ1)2 ⇐⇒ s2 cos θ1 > −

√
s21 − (s2 sin θ1)2,

so that Factoid (3) is now

s1 > s2 ⇐⇒ s2 cos θ1 > −
√
s21 − (s2 sin θ1)2,

which is equivalent to s+3 > 0. This explains all the zeroes in the right column of the table, when
s1 ≤ s2, and, since cos θ1 ≤ 0 clearly implies s−3 ≤ 0, explains the “1” in the bottom of the right
column.

For the remainder of the proof, assume θ1 < π
2 . This implies that s2 cos θ1 > 0, thus s+3 > 0;

we are guaranteed at least one real, positive solution of (*). Factoid (2) implies that the solution is
unique when s1 = s2 sin θ1, hence we get a “1” in that row of the table.

Again because s2 cos θ1 > 0, Factoid (3) becomes

s1 > s2 ⇐⇒ s2 cos θ1 <
√
s21 − (s2 sin θ1)2 ⇐⇒ s−3 < 0.

Also

s1 = s2 ⇐⇒
√
s21 − (s2 sin θ1)2 =

√
s21 − (s1 sin θ1)2 ⇐⇒

√
s21 − (s2 sin θ1)2 =

√
s21(cos θ1)2

⇐⇒ s−3 = 0,
thus

s1 ≥ s2 ⇐⇒ s−3 ≤ 0.
Combining this with Factoid (2), we get two real, positive solutions of (*) when s2 > s1 > s2 sin θ1,
and a unique solution when s1 ≥ s2. �

Remark 10.8. The proof of Theorem 10.7 is purely algebraic. Thus it carries authority, but might
not provide intuition. See DRAWINGS 10.13 at the end of this chapter for some geometric intuitive
rationalization of the table in Theorem 10.7. Our perspective in DRAWINGS 10.13 is to begin with
s2 and θ1, then try to visualize what values of s1 will allow the side of length s3 to appear.

In DRAWINGS 10.13 at the end of this chapter, we denoted by ε ≡
√
s21 − (s2 sin θ1)2, so that

s3 = s2 cos θ1 ± ε;

that is, in the terminology from the proof of Theorem 10.7,

s+3 = s2 cos θ1 + ε and s−3 = s2 cos θ1 − ε.

Also note that s2 sin θ1 is the shortest distance from where the sides of length s2 and s1 meet to
the desired missing side of length s3 (see the first picture in DRAWINGS 10.13 at the end of this
chapter).

Examples 10.9. Which of the following drawn triangles in DRAWINGS 10.14 at the end of this
chapter are possible? Which of them has more than one possibility (up to congruence)?

Solutions. Use Theorem 10.7, with s2 = 10. For (a) thru (e), use the column in Theorem 10.7
labelled “θ1 < π

2 ”, so that sin θ1 = 1
2 , giving us a possible unique triangle for (b), (d), and (e), two

possible triangles for (c), and no possible triangle for (a). For (f) and (g), use the column labelled
“θ1 ≥ π

2 , to conclude there is no triangle as in (f), a unique triangle in (g).

Examples 10.10. (a) In DRAWING 10.15 at the end of this chapter, find x, the length of the
lower horizontal line. Assume the two horizontal lines are parallel.
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(b) Suppose that, when an eight foot tall Frankenstein monster is five feet from a lamppost, the
distance from the foot of the monster to the end of his shadow is four feet. How tall is the lamppost?
Assume that both the monster and the lamppost are perpendicular to the ground.

Solutions. (a) See DRAWING 10.16 at the end of this chapter. By Proposition 3.6, angle measures
θ1 and θ2 are equal, thus, by Theorem 10.1(b) (AAA), triangles ACD and ABE are similar. This
implies, by Proposition 8.5, that

x

10
=

5
5 + 7

→ x =
50
12

=
25
6
.

(b) See DRAWING 10.17 at the end of this chapter, where x is the height of the lamppost. By
Theorem 10.1(b), triangles ACD and ABE are similar, thus, by Proposition 8.5,

x

4 + 5
=

8
4
→ x = 18.
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HOMEWORK

HWX.1. In each part of DRAWINGS 10.18 at the end of this chapter, determine how many (up
to congruence) triangles have the given lengths of sides and measures of angles.

HWX.2. Which of the pairs of triangles in DRAWINGS 10.19 at the end of this chapter are
guaranteed by Theorem 10.1, from the information given, to be congruent?

HWX.3. Use congruence (Theorems 10.1 and 10.7) to prove the other parts (see Example 10.2)
of Theorem 7.10.

HWX.4. Some children are equipped with graph paper, a protractor (for measuring angles on a
piece of paper), and an astrolabe (for measuring angles of elevation). The goal is to get the height
of a tree from measurements on the ground, without trigonometry.

(a) Fourteen paces from the tree, we measure the angle of elevation, call it θ, to the top of the
tree. On a piece of graph paper we construct that angle of elevation and the paces, with each pace
represented by a side of a square; see DRAWING 10.20 at the end of this chapter. Use similar
triangles to estimate the height of the tree.

(b) Same as (a), except there is poison ivy that you must avoid in a disc of radius seven paces with
the tree at the center, and we measure the angle of elevation both at the edge of the poison ivy and
nine paces further away from the tree than the poison ivy; see DRAWING 10.21 at the end of this
chapter.
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HOMEWORK ANSWERS

HWX.1. (a) one (Theorem 10.7) (b) none (Theorem 7.10) (c) none (Theorem 10.7) (d) one
(Theorem 10.7) (e) two (Theorem 10.7) (f)–(j) none (Theorem 10.7) (k) one (Theorem 10.7)
(`) one (Theorems 10.4(a) and 10.6(a)) (m) one (Theorem 10.7 or Pythagorean theorem) (n)
none (Theorem 10.7 or Pythagorean theorem) (o) infinitely many (other side forming vertex of
angle measure sixty degrees could be anything) (p) none (Theorem 10.6(b)) (q) infinitely many
(could magnify triangle by any positive factor) (r) one (Theorems 10.4(b) and 10.6(b)).

HWX.2. (a), (d), (g).

HWX.3. See Examples 10.2 and DRAWINGS 10.9 at the end of this chapter, for the meaning of
the points P, Q, R, and S. The congruence of the triangles PSR and SQR imply all the assertions
(a)–(d) in Theorem 7.10.

See DRAWINGS 10.22 at the end of this chapter for (a) implying the desired congruence, hence
(b), (c), and (d); (b) implying the desired congruence, hence (a), (c), and (d); and (c) implying the
desired congruence, hence (a), (b), and (d).

HWX.4. Count squares; for (a), look at DRAWING 10.20 at the end of this chapter, for (b), look
at DRAWING 10.21 at the end of this chapter.

(a) 17 paces high.

(b) 20 paces high.
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CHAPTER XI: More Quadrilateral Results.

First we would like to address converses to some parallelogram results in Chapter III. Proposition
11.1 is a converse of Proposition 3.6, while Proposition 11.3 is a converse of Proposition 3.8, and
Proposition 11.3, which should be compared to Proposition 3.5, is a converse of Proposition 3.3.

Proposition 11.4 will characterize parallelograms whose diagonals bisect their interior angles.
Proposition 11.5 shows a surprising amount of information following from small conditions on a
quadrilateral, that will provide the key for most of our constructions in the next chapter.

Proposition 11.1. Suppose `1, `2, `3 are lines, with `3 intersecting both `1 and `2. If, in DRAWING
11.1 at the end of this chapter, θ4 = θ5, then `1 and `2 are parallel.

Proof: For j = 1, 2, 3, let eiθj be a unit direction vector, in complex form, for `j , oriented as in
DRAWING 11.1 at the end of this chapter. By Proposition 6.6 and Theorem 6.9, θ4 = (θ3 − θ1)
and θ5 = (θ3 − θ2). If θ4 = θ5, then θ1 = θ2, so that `1 and `2 have the same direction vector.
This is saying (Definitions 2.1) that `1 and `2 are parallel. See DRAWING 11.2 at the end of this
chapter. �

Proposition 11.2. If a quadrilateral has nonadjacent interior angles of equal measure, as in
DRAWING 11.3 at the end of this chapter, then it is a parallelogram.

Proof: In DRAWING 11.3 at the end of this chapter, extend the left side of the quadrilateral (to
a line `3) and the top and bottom of the quadrilateral (to lines `1 and `2), as in DRAWING 11.4 at
the end of this chapter.

By Corollary 3.10, 2π = 2θ1 + 2θ2 (see DRAWING 11.3 at the end of this chapter), thus
(θ1 + θ2) = π = (θ2 + θ3) (see DRAWING 11.4 at the end of this chapter). Thus θ1 = θ3 in
DRAWING 11.4 at the end of this chapter; Proposition 11.1 now implies that `1 and `2, hence the
top and bottom of the quadrilateral, are parallel. An identical argument shows that the right and
left sides of the quadrilateral are parallel; this means we have a parallelogram. �

Proposition 11.3. If a quadrilateral has nonconsecutive sides of equal length, then it is a parallel-
ogram.

Proof: Add a diagonal to the quadrilateral, as in DRAWING 11.5 at the end of this chapter.

The two triangles formed are congruent, by SSS (Theorem 10.1(a)). Since sides must be mapped,
by the rigid motions defining congruence, to sides of equal length, the congruent angles are as drawn
in DRAWING 11.6 at the end of this chapter.

By Proposition 11.2, the result follows. �

Proposition 11.4. A diagonal in a parallelogram bisects opposite interior angles if and only if the
parallelogram is a rhombus (Definitions 5.4).

Proof: See DRAWING 11.7 at the end of this chapter, where we have drawn the picture of a
diagonal in a parallelogram guaranteed by HWIII.2, along with lengths of sides. Focusing on the
left triangle, Theorem 7.10(a) ⇐⇒ (c) tells us that s1 = s2 ⇐⇒ θ1 = θ2, as desired. �

Recall that we had another characterization of a rhombus, in Proposition 5.5.

Proposition 11.5. Form a quadrilateral from the isosceles sides of two isosceles triangles, with
vertices P, Q, R, S, as in DRAWING 11.8 at the end of this chapter.
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Add on line segments
−→
QS and

−→
PR between opposite vertices, as in DRAWING 11.9 at the end

of this chapter.

Then
−→
QS is the perpendicular bisector of

−→
PR and bisects the angle at the vertex Q, as in

DRAWING 11.10 at the end of this chapter.

Proof: See DRAWINGS 11.11 at the end of this chapter for the following chain of reasoning.
By SSS (Theorem 10.1(a)), triangle SPQ is congruent to triangle SRQ. This implies that

−→
QS

bisects the angle at Q. The remaining results follow from Theorem 7.10, focusing on the isosceles
triangle RPQ, or SAS (Theorem 10.1(a)) applied to the pair of triangles in the second-to-last drawing
in DRAWINGS 11.11 at the end of this chapter. �

Examples 11.6. For each of the parallelograms in DRAWINGS 11.12 at the end of this chapter,
fill in side lengths and angle measurements, where possible.

Solutions. See DRAWINGS 11.13 at the end of this chapter.

(a) Propositions 3.3 and 3.8.

(b) Propositions 3.3, 3.8, and 11.4.

(c) Proposition 3.3 and HWIII.2 or Proposition 3.6.

(d) Propositions 3.8, 3.9, and 11.4.

(e) Propositions 3.8, 5.5, and 11.4.

(f) Propositions 3.8, 3.13, and 5.6.

(g) Propositions 3.13, 5.6, and 11.4, and the Pythagorean theorem.

Examples 11.7. Find x in each of the drawings of parallelograms in DRAWINGS 11.14 at the end
of this chapter.

Solutions. (a) By HWIII.2 or Proposition 3.6, x = (2x− π
3 ), so x = π

3 .

(b) By Proposition 11.4, (3x− π
2 ) = (x+ π), so x = 3π

4 .

(c) By Proposition 3.8, (x− π) + (2x− π) = π, so x = π.

(d) By Proposition 3.8, (3x+ π) = (2x+ 4π
3 ), so x = π

3 .

(e) By Propositions 5.6 and 3.13, 2(x+ 5) = 2(2x), so x = 5.

(f) By Proposition 3.13, (3x− 14) = x, so x = 7.

(g) By Proposition 5.5, (2x+ 9) = (x+ 20), so x = 11.
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HOMEWORK

HWXI.1. For each of the parallelograms in DRAWINGS 11.15 at the end of this chapter, fill in
side lengths and angle measurements, where possible.

HWXI.2. Find x in each of the drawings of parallelograms in DRAWINGS 11.16 at the end of this
chapter.
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HOMEWORK ANSWERS

HWXI.1. See DRAWINGS 11.17 at the end of this chapter.

HWXI.2. (a) π
8 (b) 2π

3 (c) 3 (d) 70 degrees (e) π
4 (f) π

6 .
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CHAPTER XII: Area and Volume.

In this chapter, we will first derive comfortable formulas for areas of triangles, parallelograms,
trapezoids (Definitions 12.2) and closed sectors of discs (Definitions 2.18). We will assume nothing
from the Appendices nor the results of Chapter IX for our area formulas. Theorem 8.3 will be
assumed.

We will also define volume and give formulas for volumes of spheres, (generalized) cylinders,
and (generalized) cones. Our presentation of volume will be less rigorous than we have done for
length, area, and angle measure, and our formulas will require calculus, as in Appendix One, for
their derivations.

Proposition 12.1. The area of either triangle formed by drawing a diagonal in a parallelogram, as
in DRAWING 12.1 at the end of this chapter, is half the area of the parallelogram.

Proof: Label the vertices of the parallelogram P,Q,R, S, as in DRAWING 12.1 at the end of this
chapter.

By SSS, triangle PQR is congruent to triangle PRS, thus they have equal area (Theorem 8.3).
Since the area of the parallelogram is the sum of the areas of the two triangles, the result follows. �

Definitions 12.2. A trapezoid is a quadrilateral with (at least) one pair of opposite sides parallel.
The height of a trapezoid is the distance between two parallel opposite sides (visualize the trapezoid
with parallel sides horizontal), that is, the distance between any point on one of the parallel opposite
sides to the line containing the opposite side; see Definition 5.1 and Theorem 5.2.

Theorem 12.3. The area of a trapezoid equals the height times the average of the lengths of the
two parallel sides; that is,

1
2
h(b1 + b2),

where h is the distance between the parallel sides of lengths b1 and b2, as in DRAWING 12.2 at the
end of this chapter.

Proof: Label the vertices of the trapezoid P,Q,R, S, as in DRAWING 12.3 at the end of this
chapter.

By translating, reflecting, rotating and relabeling the parallel sides if necessary (by Theorem 8.3
this will not change area), assume the parallel side of length b2 is on the positive x axis, with the
vertex R at the origin and the x coordinate of Q nonnegative.

Still in DRAWING 12.3, let

T ≡ proj−→
RS

(Q), U ≡ proj−→
RS

(P ),

and label lengths

h ≡ ‖
−→
QT‖ = (by Corollary 5.3)‖

−−→
PU‖, c1 ≡ ‖

−→
RT‖, c3 ≡ ‖

−→
SU‖,

c2 ≡ the remaining horizontal distance on the base of the trapezoid in DRAWING 12.3 at the end of this chapter.

There are three relevant areas to manipulate:

A1 ≡ area of the triangle with vertices Q,R, T,

A2 ≡ area of the quadrilateral with verticesP,Q, T, U,
and

A3 ≡ area of the triangle with vertices P, S, U.
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Since
−→
QT and

−→
TS are orthogonal, while Theorem 5.2 implies that

−→
QT =

−−→
PU, the quadrilateral

with vertices P,Q, T, U is a rectangle, thus we may use Definitions 2.4(ii) and Proposition 12.1 for
all three areas, to get

A1 =
1
2
c1h, A2 = hb1 and A3 =

1
2
c3h.

We now need three cases, the case depending on the relationship, in DRAWING 12.3 at the end
of this chapter, between S and U.

CASE 1: S to right of U (see DRAWING 12.4 at the end of this chapter).

area of trapezoid = A1 +A2 +A3

=
1
2
c1h+ hb1 +

1
2
c3h =

1
2
h(c1 + 2b1 + c3) =

1
2
h(b1 + (c1 + b1 + c3)) =

1
2
h(b1 + b2),

as desired.

CASE 2: S to left of U (see DRAWING 12.5 at the end of this chapter).

area of trapezoid = A1 +A2 −A3

=
1
2
c1h+ hb1 −

1
2
c3h =

1
2
h(c1 + 2b1 − c3) =

1
2
h(b1 + (c1 + b1 − c3)) =

1
2
h(b1 + b2),

as desired.

CASE 3: S equals U (see DRAWING 12.6 at the end of this chapter).

area of trapezoid = A1 +A2

=
1
2
c1h+ hb1 =

1
2
h(c1 + 2b1) =

1
2
h(b1 + (c1 + b1)) =

1
2
h(b1 + b2),

as desired. �

Notice, in our formula for trapezoid in Theorem 12.3, we get a formula for area of a triangle by
setting b1 = 0, which in turn, by Proposition 12.1, gives us a formula for area of a parallelogram
(see DRAWINGS 12.7 at the end of this chapter and HW XII.1).

See Definitions 2.18 for the definitions of arc of a circle and sector of a disc.

Theorem 12.4. If 0 < ψ ≤ 2π and a closed sector of a disc of radius R is determined by an arc of
length Rψ, then the sector has area 1

2R
2ψ. See DRAWING 12.8 at the end of this chapter.

Proof: By Theorem 8.3, we may assume that R = 1 and the disc is centered at the origin, so that
our closed disc is

{(x, y) |x2 + y2 ≤ 1} = {reiφ | 0 ≤ φ ≤ 2π, 0 ≤ r ≤ 1}.
Again by Theorem 8.3 we may assume that the arc is counterclockwise from (1, 0); that is, our arc
is

{eiφ | 0 ≤ φ ≤ ψ};
denote by Sψ the closed sector determined by this arc.

Let θ ≡ ψ
4 . By Theorem 8.3 yet again, since our closed sector is the union of four closed sectors

of equal area overlapping only on curves (for each sector, rotate by θ the closed sector determined by
an arc of length θ), the area of our closed sector is four times the area of the closed sector determined
by the arc

{eiφ | 0 ≤ φ ≤ θ}.
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Let Sθ be the closed sector determined by the arc of length θ just described. See DRAWING 12.9
at the end of this chapter.

By Proposition APP1.9, the area of Sθ is θ
2 , thus the area of Sψ is 4

(
θ
2

)
= 1

2ψ, as desired. �

Examples 12.5. In each of the figures in DRAWINGS 12.10 at the end of this chapter, get the
area. All quadrilaterals are trapezoids; all curves that are not line segments are arcs of a circle.

Solutions. (a) By Proposition 12.1 the area of the unshaded triangle is 11 and the area of the
parallelogram is 22.

(b) By Theorem 12.3, the area of the trapezoid is 1
2 × 10× (12 + 15) = 135.

(c) By Theorem 12.4, the area is 1
252π = 25π

2 .

(d) By Theorem 12.4, the area is 1
2 (10 feet)2 π3 = 50π

3 feet squared.

(e) Here R 4π
3 = 40π, so the radius R is 30, thus by Theorem 12.4 the area is 1

2 (30)2 4π
3 = 1800π

3 =
600π.

Definitions 12.6. To discuss volume, we must consider, very analogously to Definition 0.1, R3

(reads “R three”), the set of all ordered triples of real numbers

{(a, b, c) | a, b, c are real numbers}.

As with R2, the number a is the x coordinate of (a, b, c), b is the y coordinate; now, in
addition, c is the z coordinate.

The x-axis is now the line {(x, 0, 0) |x is real}, the y-axis is now the line {(0, y, 0) | y is real},
and we additionally get the z-axis {(0, 0, z) | z is real}.

The xy plane ≡ {(a, b, 0) | a, b are real numbers}. Compare this to the definition of R2 (Defini-
tions 0.1).

When we think of R2 or the xy plane as the surface of a flat, infinite earth, R3 becomes space,
with the z coordinate measuring how far above the earth we are. Negative values of z place you
below the surface of the earth. See DRAWING 12.11 at the end of this chapter.

Very analogously to area (Definitions 2.4(ii)), the volume of the set

[a1, b1]× [a2, b2]× [a3, b3] ≡ {(x, y, z) | a1 ≤ x ≤ b1, a2 ≤ y ≤ b2, a3 ≤ z ≤ b3} (bk ≥ ak, k = 1, 2, 3)

is defined to be (b1 − a1)(b2 − a2)(b3 − a3).

When (b1 − a1) = (b2 − a2) = (b3 − a3), then [a1, b1] × [a2, b2] × [a3, b3] is a cube. In general,
[a1, b1] × [a2, b2] × [a3, b3] is a three-dimensional analogue of a rectangle, sometimes called a box.
See DRAWING 12.12 at the end of this chapter.

See Definitions APP1.10 for calculating more general volume.

Definitions 12.7. Here are the subsets of R3 of interest. Throughout, H and r are positive real
numbers.

(a) A cylinder, of height H and radius r, is

{(x, y, z) | 0 ≤ z ≤ H, x2 + y2 ≤ r2}.

See DRAWING 12.13 at the end of this chapter.
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This is like the soup inside a metal can of soup that you might buy at a grocery store. The
geometric property of interest is that, if you freeze the soup, then cut the can parallel to the base, you
will always get the same cross section of frozen soup staring at you; in this case, the disc x2 +y2 ≤ r.

The cylinder is formed by putting many identical discs of infinitesimal thickness on top of each
other.

We might want a more exotic cross section repeating itself.

(b) Suppose Ω is a subset of R2 and H > 0. Then

{(x, y, z) | (x, y) is in Ω, 0 ≤ z ≤ H}
is a generalized cylinder of height H with base Ω.

We visualize here copies of Ω stacked up to a height of H. See DRAWING 12.14 at the end of
this chapter.

(c) A cone, of height H and radius r, is

{(x, y, z) | 0 ≤ z ≤ H, x2 + y2 ≤
(
H − z

H

)2

r2}.

See DRAWING 12.15 at the end of this chapter.

As with (a), every cross section parallel to the xy plane is a disc, but the radii shrink linearly
as z increases: the radius of the cross section at z is

(
H−z
H

)
r.

The top of this cone is the point (0, 0,H), the base is the disc x2 + y2 ≤ r2 in the xy plane, as
with a cylinder, and the rest of the cone is formed by throwing in all line segments from the top to
the base.

Note that we could equivalently define a cone of height H and radius r as

{(
(
H − z

H

)
x,

(
H − z

H

)
y, z) | 0 ≤ z ≤ H, x2 + y2 ≤ r2}.

The base of this cone is the disc {(x, y) |x2 + y2 ≤ r2}.

As with a cylinder, we might want to vary the base of our cone. Note the similarity to the
generalized cylinder in the following definition.

(d) Suppose Ω is a subset of R2 and H > 0. Then

{(
(
H − z

H

)
x,

(
H − z

H

)
y, z) | (x, y) is in Ω, 0 ≤ z ≤ H}

is a generalized cone of height H with base Ω.

Here the base is Ω in the xy plane, and, as z increases from 0 to H, the cross sections are crushed
by the factor

(
H−z
H

)
(what we called a magnification in Definitions 8.1(d)), up to the top (0, 0,H).

As with (c), we can form our generalized cone by including all line segments from the top to the
base.

When Ω is a polygon (Definitions 2.3), the generalized cone is called a pyramid. When Ω is a
triangle, the generalized cone is called a tetrahedron.

(e) A ball of radius r, centered at a point (a, b, c), is

{(x, y, z) | (x− a)2 + (y − b)2 + (z − c)2 ≤ r2}.

The following theorem refers to Definitions 12.7. Notice that passing from (generalized) cylinder
to (generalized) cone always multiplies the volume by 1

3 .
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Theorem 12.8. As in Definitions 12.7, H > 0, r > 0, and Ω is a subset of R2.

(a) The volume of the cylinder of height H and radius r is πr2H.

(b) The volume of the generalized cylinder of height H and base Ω is (area of Ω)H.

(c) The volume of the cone of height H and radius r is π
3 r

2H.

(d) The volume of the generalized cone of height H and base Ω is 1
3 (area of Ω)H.

(e) The volume of a ball of radius r is 4
3πr

3.

Proof: APP1.11. �

Examples 12.9. Get the volumes of each of the following.

(a) A ball of radius 6.

(b) A cylinder of height 10 and radius 5.

(c) A generalized cylinder with height 8 and base the triangle with vertices (−1, 0, 0), (1, 3, 0), and
(4, 0, 0).

(d) A tetrahedron with vertices (−1, 0, 0), (1, 3, 0), (4, 0, 0), and (0, 0, 8).

Solutions. (a) 4
3π63 = 288π.

(b) π(52)(10) = 250π.

(c) Since the triangle has height 3 and base 5 (see DRAWING 12.16 at the end of this chapter), its
area is 1

2 (3)(5) = 15
2 , thus the desired volume is ( 15

2 )(8) = 60.

(d) This is the generalized cone for the same height and base as the generalized cylinder of (c), thus
the volume of the generalized cone is ( 1

3 )(60) = 20.
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HOMEWORK

HWXII.1. Use Theorem 12.3 to prove the following, as drawn in DRAWINGS 12.7 at the end of
this chapter.

(a) The area of a triangle is one-half the base times the height.

(b) The area of a parallelogram is the base times the height.

HWXII.2. Get the shaded areas in DRAWING 2.21 and DRAWING 2.25, both at the end of
Chapter II.

HWXII.3. Get the area of the trapezoid (a), the area of the parallelogram (b), and the area of the
shaded triangle in (b), all in DRAWINGS 12.17 at the end of this chapter.

HWXII.4. Get the volumes of each of the following.

(a) A cylinder of height 12 meters and radius 3 meters.

(b) A generalized cylinder with height 10 and base the parallelogram formed by < 1, 2 > and
< 3, 4 > . Use Proposition 9.7.

(c) A tetrahedron with height 10 and base the parallelogram formed by < 1, 2 > and < 3, 4 > .

(d) A ball of radius 10 feet.

(e) A ball such that the area of the disc, whose boundary is the equator, is 100 meters squared. (By
equator we mean that if, after translation, the ball is {(x, y, z) |x2 +y2 + z2 ≤ R2}, then the equator
is {(x, y, 0) |x2 + y2 = R2}, the boundary of the disc {(x, y, 0) |x2 + y2 ≤ R2}.)



304

HOMEWORK ANSWERS

HWXII.1. (b) follows from Theorem 12.3, with b1 = b2 = b. (a) now follows from Corollary
APP1.6 or Proposition 12.1.

HWXII.2. The shaded area in DRAWING 2.21 is 1
2 × 102 × 240( π

180 ) = 200π
3 . The shaded area in

DRAWING 2.25 is 1
2 × (8 ft )2 × 11π

12 = 88π
3 ft squared .

HWXII.3. (a) 1
2 × 6× (16 + 11) = 81.

(b) 6× 13 = 78.

(c) 1
2 × 78 = 39.

HWXII.4. (a) π × (12 meters)× (3 meters)2 = 108π meters cubed.

(b) The area of the base is (see Proposition 9.7) |det
[
1 3
2 4

]
| = 2, so our volume is 20.

(c) 20
3 .

(d) 4π
3 (10 feet)3 = 4,000π

3 feet cubed.

(e) Let R be the radius of the ball. We have 100 = πR2, so R = 10√
π

meters, thus our volume is

4
3π
(

10√
π

)3

meters cubed = 4,000
3
√
π

meters cubed.
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CHAPTER XIII: Construction with Straight-Edge and Compass.

A straight-edge is a ruler without the markings. A compass is a device with two ends, one of
which can be held at a fixed point (traditionally, a sharp end jabbed into paper), while the other
end makes a mark or marks a fixed distance away from the original point.

The straight-edge is used to draw lines or line segments. In particular, given two points P and
Q, the straight-edge can be used to draw the line segment between P and Q.

The “fixed distance” of the compass setting can be adjusted. A compass can draw a circle; the
fixed point is the center of the circle, the fixed distance is the radius of the circle, and the compass
will then draw the circle by marking all points that fixed distance away from the center.

The compass can reproduce distances. More precisely, given two points P and Q, the compass
can be set so that one end is at P, the other end at Q. Given any third point, call it R, the compass
can then make a mark at a point S whose distance to R equals the distance between P and Q:
‖
−→
RS‖ = ‖

−−→
PQ‖.

Throughout this chapter, constructing, drawing, or bisecting, means using only a straight-
edge and compass.

The classical Greeks were very interested in drawing or constructing figures or angles. This
section will present some of these constructions. In all constructions, the reader is encouraged to
try original ideas before looking at ours.

One very natural figure that we’d like to construct is a regular polygon, meaning a polygon
with sides of equal length and interior angles of equal measure. It is interesting that not all regular
polygons are constructible, that is, able to be constructed. A regular polygon of three sides (called
an equilateral triangle), of four sides (called a square), of five sides (a regular pentagon), of
six sides (a regular hexagon), or of eight sides (a regular octagon) is constructible, but a regular
polygon of seven sides (a regular septagon) is not. We do not wish to explain why; explanation
requires knowledge of the branch of mathematics known as abstract algebra.

We would like to describe our constructions primarily with drawings, thus we need to begin with
a brief dictionary of drawings.

Using the straight-edge to draw the line segment between two given points will be drawn as in
DRAWINGS 13.1 at the end of this chapter.

Given two points P and Q, making the fixed distance of the compass setting equal to ‖
−−→
PQ‖ will

be drawn as in DRAWINGS 13.2 at the end of this chapter; notice that the arc drawn at Q is a
piece of a circle of radius ‖

−−→
PQ‖ centered at P ; P is where the sharp end of the compass is placed,

the other end makes an arc that includes the point Q.

If, in addition to DRAWINGS 13.2, we want to make an arc of points that same fixed distance
away from a third point R, it will be drawn as in DRAWINGS 13.3 at the end of this chapter, with
the sharp end of the compass at R, the other end describing an arc, with the same radius ‖

−−→
PQ‖.

Construction 13.1. Draw an equilateral triangle (see HWVII.5) with sides of a specified length.
See DRAWINGS 13.4 at the end of this chapter.

Construction 13.2. Bisect an angle. See DRAWINGS 13.5 at the end of this chapter.
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Construction 13.3. Bisect a line segment. See DRAWINGS 13.6 at the end of this chapter.

Construction 13.4. Given a point on a line, draw a line thru that point perpendicular to the
original line.

This is a special case of Construction 13.2, for the angle of measure π. See DRAWING 13.7 at
the end of this chapter.

Construction 13.5. Given a line and a point not on that line, draw a line thru that point
perpendicular to the original line.

Recall that we have an algebraic construction in Theorem 4.11. See DRAWINGS 13.8 at the
end of this chapter.

Construction 13.6. Given a line and a point not on that line, draw a line thru that point parallel
to the original line.

This begins with Construction 13.5, then apply Construction 13.4 to the original point. See
DRAWINGS 13.9 at the end of this chapter.

Construction 13.7. Draw a square, with sides of a specified length.
This will primarily be Construction 13.4, while using the compass to reproduce the specified

length. See DRAWINGS 13.10 at the end of this chapter.

Remarks 13.8. (a) For n = 3, 4, 5, . . . , constructing a regular n-gon is equivalent to constructing
an angle of measure 2π

n , which in turn is equivalent to constructing an isosceles triangle, with angle
between two sides of equal length measuring 2π

n .
To believe these equivalences, we need a fact that we do not wish to prove: inside any regular

polygon is a unique point, called the center of the polygon, that is equidistant from each vertex.
The assertion of faith in the previous paragraph implies that any regular polygon may be in-

scribed (see DRAWINGS 13.11(a) at the end of this chapter) in a circle centered at the polygon’s
center with radius equal to that common distance from center to vertex. By drawing all lines from
center to vertices, we obtain n (the number of vertices of the polygon) congruent (by SAS) isosceles
triangles as described in the first line of this Remark.

Conversely, given n such congruent isosceles triangles, they may be pasted together to form a
regular n-gon. See DRAWINGS 13.11(a) at the end of this chapter.

For example, we could have drawn a square by drawing a circle, then a diameter of the circle,
then another diameter perpendicular to the first diameter (use Construction 13.4). The points where
the diameters hit the circle become the vertices of a square, drawn in red in DRAWINGS 13.11(b)
at the end of this chapter; notice that we have simultaneously drawn four congruent isosceles right
triangles; more precisely, we have angles of measure π

2 = 2π
4 at the center, between sides of equal

length.

(b) For n = 3, 4, 5, . . . , angles of measure 2π
n appear elsewhere in a regular n-gon and suggest a

possible general method for constructing a regular n-gon.
Corollary 3.10 asserts that the sum of the measures of the interior angles in an n-gon is (n−2)π.

It then follows that each interior angle in a regular n-gon measures
(

(n−2)
n

)
π, thus each exterior

angle (see Definitions 2.16) measures

π −
(

(n− 2)
n

)
π =

2π
n
.

See DRAWINGS 13.11(c) at the end of this chapter, of each vertex in a regular n-gon.
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If angles of measure
(

(n−2)
n

)
π can be constructed (equivalent to angles of measure 2π

n being
constructible), then this suggests the following strategy for constructing a regular n-gon, with sides
of a specified length, call it c.

Begin with a line segment of length c, labeled Q1Q2 in DRAWINGS 13.11(d) at the end of this
chapter. At the point Q2, draw a line segment of length c, call it Q2Q3, that makes an angle of
measure

(
(n−2)
n

)
π with the original line segment Q1Q2. Continue adding on line segments of length

c that make an angle of
(

(n−2)
n

)
π with the previous line segment, until your string of line segments

meets at Q1. See DRAWINGS 13.11(d) at the end of this chapter.

For this construction to work, we must verify that the n line segments constructed in the
previous paragraph will terminate at the original point Q1. This is equivalent to the vectors between
consecutive vertices, as in Definitions 2.3, adding up to the zero vector ~0. That is, in DRAWINGS
13.11(e) at the end of this chapter, we need(−→

S0 +
−→
S1 +

−→
S2 + · · ·+

−−−→
Sn−1

)
=
−→
0 . (∗)

We will now find it very convenient to think of vectors as complex numbers, as in 1.16. From
Theorem 2.13, for arbitrary complex z representing a vector, multiplying by e

2πi
n rotates z by 2π

n

counterclockwise; that is, produces an exterior angle of measure 2π
n , as in DRAWINGS 13.11(f) at

the end of this chapter.

In DRAWINGS 13.11(e) at the end of this chapter, representing
−→
S0 by the complex (real) number

c, we thus have
−→
S1 = e

2πi
n c,

−→
S2 = e2

2πi
n c,

−→
S3 = e3

2πi
n c, . . . ,

−−−→
Sn−1 = e(n−1) 2πi

n c,

so that (see (*) above and in DRAWINGS 13.11(e) at the end of this chapter), by HWI.5,(−→
S0 +

−→
S1 +

−→
S2 + · · ·+

−−−→
Sn−1

)
=
(
c+ e

2πi
n c+ e2

2πi
n c+ e3

2πi
n c+ · · ·+ e(n−1) 2πi

n c
)

= c

(
1 + e

2πi
n +

(
e

2πi
n

)2

+
(
e

2πi
n

)3

· · ·+
(
e

2πi
n

)(n−1)
)

= c

1−
(
e

2πi
n

)n
1−

(
e

2πi
n

)
 = c

 1− e2πi

1−
(
e

2πi
n

)


= c

 1− 1

1−
(
e

2πi
n

)
 = 0,

proving (*), as needed for our construction.

For example, we could construct a square by careening around making right-angle turns; see
DRAWINGS 13.11(g) at the end of this chapter.

Since (
c+ e

π
4 ic+ e2

π
4 ic+ e3

π
4 ic
)

= (c+ ci− c− ci) = 0,
the line segments fit together to make a square.

Similar cancellations can be calculated directly for applying this construction to a regular
hexagon (n = 6) and a regular octagon (n = 8). For variety, and to avoid constructing the same
angle many times, we will use different constructions for the regular hexagon and octagon.

Finally, we should reiterate that the construction of a regular n-gon in Remarks 13.8(b) presup-
poses that the angle of measure 2π

n is constructible.

Construction 13.9. Draw a regular hexagon, with sides of a specified length.
Begin by drawing a circle whose radius is that specified length. Starting at any point on that

circle, use the compass, as in Construction 13.1, to construct a sequence of contiguous equilateral
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triangles sharing a vertex at the center of the circle, each with sides whose lengths are equal to the
specified length. See DRAWINGS 13.12 at the end of this chapter.

Notice that we have simultaneously shown that the angle of measure π
3 = 2π

6 is constructible;
see Remarks 13.8(a).

Construction 13.10. Draw a regular octagon.
As with Construction 13.9, begin with a circle. Draw a line segment thru a diameter of the

circle. Bisect angles (Construction 13.2) twice, to get a sequence of points on your circle; make
those points the vertices of your octagon. See DRAWINGS 13.13(a) at the end of this chapter.

To get a regular octagon with sides of a specified length, we need to specify the radius of the
circle that our regular octagon construction begins with.

Begin with a line segment of the specified length. By Constructions 13.2 and 13.4, we may
draw rays beginning at the endpoints of the original line segment, each making an angle of measure
3π
4 with said line segment. Use Construction 13.2 to bisect those 3π

4 angles. Extend those lines
performing the last bisection until they intersect; each of those line segments just constructed will
have length equal to the desired radius. See DRAWINGS 13.13(b) at the end of this chapter.

Although it does not facilitate our construction, we can’t help mentioning that the Law of
Cosines implies that, if c is the length of a side and r is the radius of the circle drawn to get our
octagon, then

r =

(√(
1 +

1√
2

))
c.

See the second-to-last page of DRAWINGS 13.13(b) at the end of this chapter.

Construction 13.11. Draw an isosceles right triangle, with legs of a specified length.
If we had drawn a square, as in Construction 13.7, we could get the desired right triangle twice,

by drawing a diagonal of the square.
But if we don’t have a square at hand, here’s a simpler construction of the right triangle.
Use the compass to draw one leg, of the specified length. Use Construction 13.4 to draw a line

perpendicular to that leg, at one end of the leg; use the compass to make that perpendicular line
the specified length. That constructs both legs of the triangle; the hypotenuse follows inevitably
by connecting the two unshared endpoints of the legs. See DRAWINGS 13.14 at the end of this
chapter.

Construction 13.12. Draw a right triangle with interior angles measuring π
6 and π

3 , and shorter
leg of a specified length.

Begin by using the compass to draw an equilateral triangle whose sides have length equal to
twice the specified length. Use Construction 13.5 to draw a perpendicular line from a vertex to the
opposite side (or, keep the mark for the length of the original side, which will be half the length
of the side of the equilateral triangle). Either side of that perpendicular line will be the desired
triangle. See DRAWINGS 13.15 at the end of this chapter.

Construction 13.13. Given three points in the plane that are not on a line, draw the circle through
those points and draw the center of said circle.

Call the points P1, P2, and P3. Use Construction 13.3 to draw the perpendicular bisector of the
line segment P1P2, call it `1, then the perpendicular bisector of the line segment P1P3, call it `2.
Let C be the intersection of `1 and `2. C is equidistant from P1, P2, and P3, thus, by setting our
compass at the distance from C to P1, we may draw a circle of that radius centered at C, that will
go through P1, P2, and P3.

See DRAWINGS 13.16 at the end of this chapter.
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REASONS WHY THE CONSTRUCTIONS WORK

Construction 13.1. By Theorem 7.10 or HWVII.5, it is sufficient to draw a triangle whose sides
are of equal length; the equality of the measures of the interior angles follows automatically.

Constructions 13.2–5. Proposition 11.5.

Construction 13.6. In the second page of DRAWINGS 13.9 at the end of this chapter, denote by
`1 the line perpendicular to both `′ and `. By Corollary 5.3, with `2 ≡ `1, `3 ≡ `′, `4 ≡ `, it follows
that `′ is parallel to `.

Construction 13.7. See the second page of DRAWINGS 13.10 at the end of this chapter. By
Corollary 5.3, with `1 ≡ `2 ≡

−−→
PQ, `3 ≡

−→
RP, `4 ≡

−→
SQ, or Proposition 4.18, we have

−→
RP and

−→
SQ

parallel. By Proposition 3.5, RSQP is a parallelogram; by Proposition 3.3, ‖
−→
RS‖ = ‖

−−→
PQ‖. By

Corollary 5.3 again, the interior angles at R and S are right angles.

Construction 13.9. As with Construction 13.1, the triangles we constructed with sides of equal
specified lengths also have equal measures, namely π

3 . Since 2π = 6(π3 ), we may paste together six of
those congruent equilateral triangles to form the desired hexagon, as in the last page of DRAWINGS
13.12 at the end of this chapter.

Construction 13.10. Now we have eight congruent (by SAS) isosceles triangles, each with an
angle of measure π

4 between sides of equal length. Since 8(π4 ) = 2π, we may paste those triangles
together to form a regular octagon, as in the last page of DRAWINGS 13.13(a) at the end of this
chapter.

Construction 13.11. This is prior constructions.

Construction 13.12. Prior constructions take us to the top of the last page of DRAWINGS
13.15 at the end of this chapter. The orthogonality of

−→
SQ, in the last drawing of the last page of

DRAWINGS 13.15 at the end of this chapter follows from Theorem 5.10.

Construction 13.13. Construction 13.3, especially the last page of DRAWINGS 13.6 at the end
of this chapter, tell us how to draw `1 and `2. The Pythagorean theorem tells us that every point on
`1 is equidistant from P1 and P2, while every point on `2 is equidistant from P1 and P3. Thus the
point C is equidistant from P1, P2, and P3, so that a circle centered at C goes through those three
points.
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HOMEWORK

In all problems, “construct” means “construct with straight edge and compass.” Assume, for
all problems, that we are given a line segment of length one.

HWXIII.1. Construct a line segment of length
√

2.

HWXIII.2. Construct an arc of length π
2 .

HWXIII.3. Construct a line segment of length
√

3
2 .

HWXIII.4. Construct a trapezoid of area 2.5.

HWXIII.5. Construct a triangle of area 1
2 .

HWXIII.6. Construct a right triangle of area 4.5.

HWXIII.7. Construct a sector of a disc of area π
8 .

HWXIII.8. Construct a disc of area 9π.

HWXIII.9. We have already mentioned that a polygon is constructible if it can be constructed.
Similarly, a length is called constructible if a line segment of that length can be constructed; an
angle measure is called constructible if an angle of that measure can be constructed.

Throughout this problem, you may assume the following without proof:

The sum of two constructible lengths or measures is constructible;

The positive difference of two constructible lengths or measures is constructible;

The product of two constructible lengths or measures is constructible;

The quotient of two constructible lengths or measures is constructible;

Tbe square root of a constructible length or measure is constructible.

A regular septagon (seven-sided regular polygon) is not constructible.

Use these facts, Remarks 13.8(a), and Constructions 13.1–7 and 13.9–13 to answer the following.
Assume we are given a line segment of length one.

(a) Show that an angle of positive measure θ < π
2 is constructible if and only if a line segment of

length cos θ is constructible.

(b) Find a positive θ < π
2 such that an angle of measure θ is not constructible.

(c) Find a positive s for which a line segment of length s is not constructible.
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HOMEWORK ANSWERS

Throughout, we use Constructions 13.1 through 13.13.

HWXIII.1. See DRAWINGS 13.17 at the end of this chapter.

HWXIII.2. See DRAWINGS 13.18 at the end of this chapter.

HWXIII.3. See DRAWINGS 13.19 at the end of this chapter.

HWXIII.4. See DRAWINGS 13.20 at the end of this chapter.

HWXIII.5. See DRAWINGS 13.21 at the end of this chapter.

HWXIII.6. See DRAWINGS 13.22 at the end of this chapter.

HWXIII.7. See DRAWINGS 13.23 at the end of this chapter.

HWXIII.8. See DRAWINGS 13.24 at the end of this chapter.

HWXIII.9.

(a) See DRAWINGS 13.25 at the end of this chapter.

(b) θ ≡ 2π
7 is not constructible, by Remarks 13.8(a) and the fact that a regular septagon is not

constructible.

(c) s ≡ cos( 2π
7 ) is not a constructible length, by (a) and (b).
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CHAPTER XIV: More Geometry and Trigonometry Problems.

Examples 14.1–14.18 will be preceded by a listing of relevant geometry and trigonometry results,
with their original numbering, and will be followed by solutions.

Corollary 2.14. (b) Suppose ~a and ~b point in opposite directions. Then π equals the measure
of both the clockwise and counterclockwise angles from ~a to ~b. See DRAWINGS 2.17 at the end of
Chapter II.

Proposition 2.19. Consider an arc and sector as in Definitions 2.18.

(a) The measure of the angle between the two lines in the boundary of the sector is (θ2 − θ1).

(b) The length of the arc is R(θ2 − θ1).

(c) The perimeter of the sector is 2R+R(θ2 − θ1).

Proposition 3.3. In a parallelogram, opposite sides have equal length.

Proposition 3.6. Suppose `1, `2, and `3 are lines, with `1 and `2 parallel, `3 intersecting both `1
and `2 and angles of measure θj , j = 1, 2, . . . , 8 as drawn in DRAWING 3.4 at the end of Chapter
III.

Then θ1 + θ2 = π, θ1 = θ3 = θ5 = θ7, and θ2 = θ4 = θ6 = θ8.

Proposition 3.8. In a parallelogram, opposite interior angles are of equal measure and the measures
of adjacent interior angles add up to π.

Corollary 3.10. For n = 3, 4, 5, . . . , the sum of the measures of the interior angles in an n-gon is
(n− 2)π.

Proposition 3.13. The diagonals of a parallelogram bisect each other.

HWIII.2. Prove that, in the drawing of a diagonal of a parallelogram in DRAWING 3.21 (see end
of Chapter III), θ1 = θ4 and θ2 = θ3.

Proposition 4.15. Suppose ~a and ~b are two nontrivial vectors. Then the following are equivalent.

(a) ~a and ~b are orthogonal.

(b) (Pythagorean theorem) ‖~a+~b‖2 = ‖~a‖2 + ‖~b‖2.

(c) ‖~a+ s~b‖ ≥ ‖~a‖ for all real s.

(d) The measure of the angle between ~a and ~b is π
2 .

Corollary 5.3. Suppose `1, `2, `3, `4 are lines, `1 and `2 are parallel, and both `3 and `4 are
perpendicular to `2 (see DRAWING 5.4(a) at the end of Chapter V). Then both `3 and `4 are
perpendicular to `1, `3 is parallel to `4, the line segments from `1 to `2 are of equal length, and the
line segments from `3 to `4 are of equal length. See DRAWING 5.4(b) at the end of Chapter V.

Proposition 5.5. In any parallelogram, the diagonals are perpendicular if and only if the parallel-
ogram is a rhombus.

Proposition 5.6. In a parallelogram, the diagonals are of equal length if and only if the parallelo-
gram is a rectangle.
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Proposition 5.7. In a parallelogram, the sum of the squares of the lengths of the sides equals the
sum of the squares of the lengths of the diagonals.

Some Properties 6.3. From staring at the picture of (cos θ, sin θ) in DRAWING 6.1 at the end of
Chapter VI and using the symmetry of the unit circle, the following properties seem believable, for
any real θ (see DRAWING 6.3 at the end of Chapter VI). Euler’s formula provides straightforward
proofs.

(i) cos(−θ) = cos θ.

(ii) sin(−θ) = − sin θ.

(iii) cos(θ + π) = − cos θ.

(iv) sin(θ + π) = − sin θ.

(v) (cos θ)2 + (sin θ)2 = 1.

(vi) | sin θ| ≤ 1 and | cos θ| ≤ 1.

(vii) cos(π2 + θ) = − sin θ = − cos(π2 − θ) and sin(π2 + θ) = cos θ = sin(π2 − θ).

(viii) cos(θ+ 2kπ) = cos θ, sin(θ+ 2kπ) = sin θ, for any real θ, integer k (this is called periodicity
of sine and cosine).

Proposition 6.4. Let θ, ψ be arbitrary real numbers.

(i) cos(θ + ψ) = cos θ cosψ − sin θ sinψ.

(ii) sin(θ + ψ) = sin θ cosψ + sinψ cos θ.

(iii) (cos θ)(cosψ) = 1
2 (cos(θ + ψ) + cos(θ − ψ)).

(iv) (sin θ)(sinψ) = 1
2 (cos(θ − ψ)− cos(θ + ψ)).

(v) (sin θ)(cosψ) = 1
2 (sin(θ + ψ) + sin(θ − ψ)).

(vi) (cos θ)2 = 1
2 (1 + cos(2θ)).

(vii) (sin θ)2 = 1
2 (1− cos(2θ)).

(viii) cos θ = 1
2 (eiθ + e−iθ).

(ix) sin θ = 1
2i (e

iθ − e−iθ).

Theorem 7.1: Law of Cosines. If a, b, c are the lengths of the sides of a triangle and θ is the
angle measure opposite the side of length c, then

c2 = a2 + b2 − 2ab cos θ.

See DRAWING 7.1 at the end of Chapter VII.

Theorem 7.5. For any right triangle, denote by c the length of the hypotenuse, by a and b the
lengths of the legs, and by θ the measure of the angle between the hypotenuse and the side of length
a.

Then

cos θ =
a

c
(“adjacent over hypotenuse”) sin θ =

b

c
(“opposite over hypotenuse”)

and

tan θ =
b

a
(“opposite over adjacent”).

See DRAWING 7.5 at the end of Chapter VII.
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Theorem 7.7: Law of Sines. If a triangle has sides of length c1, c2, c3, and, for j = 1, 2, 3, θj is
the measure of the angle opposite the side of length cj , then

c1
sin θ1

=
c2

sin θ2
=

c3
sin θ3

.

Theorem 7.10. Let P,Q,R be the three vertices of a triangle (see DRAWINGS 7.10 at the end of
Chapter VII). Then the following are equivalent.

(a) ‖
−→
PR‖ = ‖

−−→
QR‖.

(b) The orthogonal projection of the vertex R onto the opposite side
−−→
PQ is the midpoint of

−−→
PQ.

(c) The measure of the interior angle at P equals the measure of the interior angle at Q.

(d) The line segment between R and its orthogonal projection onto
−−→
PQ bisects the interior angle at

R.

Examples 7.11(e)

cos(π4 ) = sin(π4 ) = 1√
2
.

cos(π3 ) = sin(π6 ) = 1
2 , cos(π6 ) = sin(π3 ) =

√
3

2 .

Theorem 7.14. Given any pair of points Q and R on a circle, the central angle formed by them
measures twice the measure of the inscribed angle formed by them with a third point P on the circle;
that is, θ = 2ψ, in DRAWING 7.14 at the end of Chapter VII.

Theorem 7.15. Suppose the circles in DRAWINGS 7.19 and 7.20 at the end of Chapter VII are
both of radius r.

(a) In DRAWING 7.19, θ = 1
2 (φ+ ψ).

(b) In DRAWING 7.20, θ = 1
2 (φ− ψ).

Proposition 8.5. If two triangles are similar, then ratios of corresponding lengths of sides are
equal. That is, suppose T1 and T2 are triangles and f is a composition of (a)–(d) in Definitions 8.1,
with T2 = f(T1). Further suppose that ~S1 and ~S2 are two sides of T1. Then

‖~S1‖
‖~S2‖

=
‖f(~S1)‖
‖f(~S2)‖

.

Proposition 9.6. If I is a point and ~a and ~b are vectors, then the area of the triangle with vertices
I, I + ~a, I +~b is 1

2 |det
[
~a ~b

]
|.

Theorem 10.1. Suppose T1 and T2 are triangles, T1 has sides S1, S2, and S3, T2 has sides S4, S5,
and S6, and, for j = 1, 2, 3, 4, 5, 6, θj is the measure of the angle opposite Sj . See DRAWING 10.1
at the end of Chapter X.

(a) Any one of the following conditions (SAS, SSS, AAS) implies that T1 and T2 are congruent.

SAS. ‖S1‖ = ‖S4‖, ‖S2‖ = ‖S5‖ and θ3 = θ6. See DRAWING 10.2 at the end of Chapter X.

Informally, agreement on two sides and the angle between the two sides implies congruence.

SSS. ‖S1‖ = ‖S4‖, ‖S2‖ = ‖S5‖, and ‖S3‖ = ‖S6‖. See DRAWING 10.3 at the end of Chapter X.
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Informally, agreement on all sides implies congruence.

AAS. ‖S1‖ = ‖S4‖, θ1 = θ4, and θ2 = θ5. See DRAWING 10.4 at the end of Chapter X.

Informally, agreement on two angles and a side implies congruence.

(b) AAA or AA. θ1 = θ4, θ2 = θ5, and θ3 = θ6 (the last equality follows automatically from the
first two, by Proposition 3.8) implies that T1 and T2 are similar. See DRAWING 10.5 at the end of
Chapter X.

Informally, agreement of all angles implies similarity.

Proposition 11.4. A diagonal in a parallelogram bisects opposite interior angles if and only if the
parallelogram is a rhombus (Definitions 5.4).

Proposition 12.1. The area of either triangle formed by drawing a diagonal in a parallelogram, as
in DRAWING 12.1 at the end of Chapter XII, is half the area of the parallelogram.

Theorem 12.3. The area of a trapezoid equals the height times the average of the lengths of the
two parallel sides; that is,

1
2
h(b1 + b2),

where h is the distance between the parallel sides of lengths b1 and b2, as in DRAWING 12.2 at the
end of Chapter XII.

Theorem 12.4. If 0 < ψ ≤ 2π and a closed sector of a disc of radius R is determined by an arc of
length Rψ, then the sector has area 1

2R
2ψ. See DRAWING 12.8 at the end of Chapter XII.

Theorem 12.8. As in Definitions 12.7, H > 0, r > 0, and Ω is a subset of R2.

(a) The volume of the cylinder of height H and radius r is πr2H.

(b) The volume of the generalized cylinder of height H and base Ω is (area of Ω)H.

(c) The volume of the cone of height H and radius r is π
3 r

2H.

(d) The volume of the generalized cone of height H and base Ω is 1
3 (area of Ω)H.

(e) The volume of a ball of radius r is 4
3πr

3.
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PROBLEMS

Make decimal approximations with a calculator when necessary to avoid trig or inverse trig
functions in your answer.

Examples 14.1. In each of the circles in DRAWINGS 14.1 at the end of this chapter, find the
measure of the angle θ. C will always be the center of the circle.

Examples 14.2. Get exact expressions (no calculator or other decimal expansions) for the following.

(a) sin( 5π
12 ).

(b) sin( 7π
12 ).

(c) cos(−π
3 ).

Example 14.3. Find interior angles, where possible, in DRAWINGS 14.2 at the end of this chapter.
Do not assume the sides AE and BD are parallel.

Example 14.4. SAME as in Example 14.3, except assume AE and BD are parallel.

Example 14.5. Find x in DRAWING 14.3 at the end of this chapter. The quadrilateral is a
parallelogram.

Examples 14.6. Find the volumes of each of the following.

(a) A cylinder whose base has radius 10, height is 6.

(b) A cone whose base has radius 10, height is 6.

(c) A pyramid with a square base (as in Egypt) whose side lengths are 700 feet and height is 600
feet.

(d) A generalized cylinder whose base has area 100 meters squared, with a height of 20 meters.

(e) A ball of radius 18 inches.

Example 14.7. Get the area of a disc whose circumference is 12π.

Example 14.8. Suppose all the interior angles of a six-sided polygon (called a hexagon) have equal
measure. Find the measure of each interior angle.

Example 14.9. Find x in DRAWING 14.4 at the end of this chapter.

Example 14.10. In DRAWING 14.5 at the end of this chapter, C is the center of a circle and ` is
a tangent to the circle at P. Get the radius of the circle.

Example 14.11. In DRAWING 14.6 at the end of this chapter, `1 and `2 are parallel. Find all
angle measures in DRAWING 14.6.

Examples 14.12. In each of the following drawings of parallelograms, fill in lengths of sides and
measures of angles where possible.

(a) DRAWING 14.7 at the end of this chapter.

(b) DRAWING 14.8 at the end of this chapter.

(c) DRAWING 14.9 at the end of this chapter.

(d) DRAWING 14.10 at the end of this chapter.

(e) DRAWING 14.11 at the end of this chapter.



372

(f) DRAWING 14.12 at the end of this chapter.

(g) DRAWING 14.13 at the end of this chapter.

(h) DRAWING 14.14 at the end of this chapter.

(i) DRAWING 14.15 at the end of this chapter.

(j) DRAWING 14.16 at the end of this chapter.

Example 14.13. When I am five feet away from a ten-foot tall lamppost, my shadow extends
four feet further away from the lamppost. How tall am I? Assume I and the lamppost are both
perpendicular to the ground.

Example 14.14. In DRAWING 14.17 at the end of this chapter, the two horizontal lines are
parallel. Find x in DRAWING 14.17.

Examples 14.15. In each of the following, get the area and perimeter. Any curve that is not a
line is an arc of a circle. Any point that appears to be the center of a circle is the center of a circle.

(a) DRAWING 14.18 at the end of this chapter.

(b) DRAWING 14.19 at the end of this chapter.

(c) DRAWING 14.20 (parallelogram) at the end of this chapter.

(d) DRAWING 14.21 (trapezoid) at the end of this chapter.

Examples 14.16. Fill in lengths of sides and measures of angles, where possible.

(a) DRAWING 14.22 at the end of this chapter.

(b) DRAWING 14.23 at the end of this chapter.

(c) DRAWING 14.24 at the end of this chapter.

(d) DRAWING 14.25 at the end of this chapter.

(e) DRAWING 14.26 at the end of this chapter.

(f) DRAWING 14.27 at the end of this chapter.

(g) DRAWING 14.28 at the end of this chapter.

(h) DRAWING 14.29 at the end of this chapter.

Examples 14.17. In DRAWING 14.30 at the end of this chapter, get cos θ, sin θ, tan θ, cos(2θ), sin(2θ), cos( 1
2θ), sin( 1

2θ),
and a decimal approximation of θ. Also get the area and perimeter of the triangle.

Example 14.18. Fill in lengths of sides and measures of angles, where possible, in DRAWING
14.31 at the end of this chapter, where the lines `1 and `2 are parallel.

Example 14.19. In DRAWING 14.66 at the end of this chapter, prove that (a)–(e) below are
equivalent.

(a) ‖
−−→
DE‖
‖
−−→
DA‖

= ‖
−−→
DC‖
‖
−−→
DB‖

.

(b) ‖
−−→
DE‖
‖
−→
EA‖

= ‖
−−→
DC‖
‖
−−→
CB‖

.

(c) The triangles DEC and DAB are similar.
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(d)
−−→
EC is parallel to

−−→
AB.

(e) ‖
−−→
EC‖
‖
−−→
AB‖

= ‖
−−→
DE‖
‖
−−→
DA‖

= ‖
−−→
DC‖
‖
−−→
DB‖

.

Note that HWIII.4 is a special case of (a) → [(d) and (e)] , with ‖
−−→
DE‖
‖
−−→
DA‖

= 1
2 = ‖

−−→
DC‖
‖
−−→
DB‖

.

We recommend the vector methods of Chapter III, as in HWIII.4, for (a) → [(d) and (e)] .
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SOLUTIONS

Examples 14.1. (a) This is 2.19. 6π
10 = 3π

5 radians.

(b) This is 7.14. 1
2

(
3π
5

)
= 3π

10 radians.

(c) This is 7.15(a). 1
2

(
6π+2π

10

)
= 2π

5 radians.

(d) This is 7.15(b). 1
2

(
6π−2π

10

)
= π

5 radians.

Examples 14.2. This is 7.11(e), 6.3 and 6.4. See DRAWINGS 14.32 at the end of this chapter.

(a) sin( 5π
12 ) = sin(π4 + π

6 ) = sin(π4 ) cos(π6 ) + sin(π6 ) cos(π4 ) =
(

1√
2

)(√
3

2

)
+
(

1
2

) (
1√
2

)
OR we could calculate

sin(
5π
12

) =

√
1
2
(1− cos(

5π
6

)) =

√
1
2
(1 + cos(

π

6
)) =

√
1
2
(1 +

√
3

2
).

(b) sin( 7π
12 ) = sin(π2 + π

12 ) = sin(π2 −
π
12 ) = sin( 5π

12 ) = . . . SAME answer as (a).

(c) cos(−π
3 ) = cos(π3 ) = 1

2 .

Example 14.3. This is 2.14 and 3.10. Let θ be the measure of the angle CDB. Then the measure
of AED is (π− (π4 + π

6 )) = 7π
12 , the measure at EDB is (π−θ), the measure of DBC is (π− (θ+ π

6 )) =
( 5π

6 − θ), and the measure at DBA is (π − ( 5π
6 − θ)) = (π6 + θ) See DRAWINGS 14.33 at the end of

this chapter.

Example 14.4. This is 2.14 and 3.10, as in Example 14.3, and, in addition, 3.6, which forces θ, from
Example 14.3 and DRAWING 14.33, to be 7π

12 , so that, replacing θ with 7π
12 throughout Example

14.3, we get DRAWING 14.34 at the end of this chapter.

Example 14.5. This is Propositions 3.3, 3.13, and 5.7. See DRAWING 14.35 at the end of this
chapter, then calculate

32 + 62 + 32 + 62 = (2x)2 + 82 → x =

√
13
2
.

Examples 14.6. This is Theorem 12.8.

(a) (π102)6 = 600π.

(b) 1
3 (600π) = 200π.

(c) 1
3 (700 feet)2(600 feet) = 98, 000, 000 feet cubed.

(d) (100m2)(20m) = 2, 000 meters cubed.

(e) 4
3π(18 inches)3 = 7, 776 inches cubed.

Example 14.7. This is 2.19 and 12.4. Let r be the radius of the disc. Since 2πr = 12π, r = 6, thus
the area is 1

2 (62)(2π) = 36π.

Example 14.8. This is 3.10, with n = 6. The sum of the measures of the interior angles is
(6− 2)π = 4π, so the measure of each angle is 4π

6 radians, or ( 4π
6 )( 180

π ) = 120 degrees.

Example 14.9. By 3.10, π = x+ 2x+ 3x = 6x, so x = π
6 .

Example 14.10. By 4.15 and the definition of a tangent line,

(8 + r)2 = r2 + 122 → 64 + 16r + r2 = r2 + 144 → r = 5.

See DRAWING 14.36 at the end of this chapter.
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Example 14.11. This is 2.14 and 3.6. See DRAWING 14.37 at the end of this chapter for the
solution.

Examples 14.12. (a) This is 3.3 and 3.8. See DRAWING 14.38 at the end of this chapter for the
solution.

(b) This is 3.3, 4.15 or 5.7, 5.5, 7.5, and 7.11(e). See DRAWING 14.39 at the end of this chapter
for the solution.

(c) Same solution as (b).

(d) This is 3.3, 3.13, 4.15, 5.5, 5.6 and 7.10. See DRAWING 14.40 at the end of this chapter for the
solution.

(e) This is 3.3 and 5.5. See DRAWING 14.41 at the end of this chapter for the solution.

(f) This is 3.3, 3.13, 4.15, and 5.6. See DRAWING 14.42 at the end of this chapter for the solution.
Notice that we have a rectangle, composed of two right triangles, each with hypotenuse 6 and leg 5,
hence the other leg is

√
62 − 52 =

√
11.

(g) This is 3.3 and HWIII.2 or 3.6. See DRAWING 14.43 at the end of this chapter for the solution.

(h) This is 3.3, 3.8, HWIII.2 or 3.6 and 11.4. See DRAWING 14.44 at the end of this chapter for
the solution.

(i) This is 3.3, 3.8, HWIII.2 or 3.6, 5.5, 7.5, and 11.4. See DRAWING 14.45 at the end of this
chapter for the solution.

(j) This is 3.10, 3.3, 3.13, 4.15, 5.6, 7.5. See DRAWING 14.46 at the end of this chapter for the
solution.

Example 14.13. See DRAWING 14.47 at the end of this chapter. By Theorem 10.1(b), x
4 = 10

9 ,

so x = 40
9 feet.

Example 14.14. This is 3.6 and 10.1(b). See DRAWING 14.48 at the end of this chapter, an
enhancement of DRAWING 14.17 at the end of this chapter, from which it follows that triangle
ABE is similar to triangle CDE, so that

x

20
=

10
5
→ x = 40.

Example 14.15. These are primarily 2.19, 12.1, 12.3, and 12.4; 4.15, HWXII.1, 7.11(e), and 7.5
will also be used.

(a) First let’s focus on the hidden right triangle; see DRAWING 14.49 at the end of this chapter.

Changing 30 degrees to π
6 radians, here’s an expansion of DRAWING 14.18, in DRAWING 14.50

at the end of this chapter.

Area comes in three pieces, sector plus triangle plus rectangle:

1
2
42

(
5π
3

)
+

1
2
(2
√

3)4 + 6× 4 =
40π
3

+ 4
√

3 + 24.

Perimeter is in two pieces, arclength plus three lengths of sides of a rectangle:

4
(

5π
3

)
+ 6 + 4 + 6 =

20π
3

+ 16.

(b) As with (a), DRAWING 14.51 at the end of this chapter is a completion of DRAWING 14.19 at
the end of this chapter. Let’s use it to put pieces together, similarly to part (a).
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For area, three pieces, from left to right: sector, triangle inside disc, triangle outside disc:

1
2
(102)

(
11π
6

)
+

1
2

(
10 cos(

π

12
)
)(

20 sin(
π

12
)
)

+
1
2

(
20 sin(

π

12
)
)

5

= 50
(

11π
6

)
+ 50 sin(

π

6
) + 50 sin(

π

12
) = 50

[
11π
6

+
1
2

+ sin(
π

12
)
]
∼ 50

[
11π
6

+ 0.76
]

;

the sin(π6 ) appeared from 6.4(ii).

For perimeter, two pieces, arclength plus two lengths of sides of the triangle outside the disc:

10
(

11π
6

)
+ 2

(√
25 + 100 sin2(

π

12
)
)
∼ 55π

3
+ 2

(√
25 + 100(0.26)2

)
.

(c) For area, we need height; see DRAWING 14.52 at the end of this chapter.

The area is height times base: 4( 5
√

3
2 ) = 10

√
3. The perimeter is (5 + 4 + 5 + 4) = 18.

(d) We’ll need both height and base. First, use 7.5 to extend DRAWING 14.21 to DRAWING 14.53
at the end of this chapter.

Corollary 5.3 extends DRAWING 14.53 to DRAWING 14.54 at the end of this chapter.

Finally, the Pythagorean theorem 4.15 extends our picture to DRAWING 14.55 at the end of
this chapter, from which we can read off

area = 4
(

1
2
(10 + (4

√
3 + 10 + 3))

)
= 8

√
3+46; perimeter = 4

√
3+10+3+5+10+8 = 4

√
3+36.

Examples 14.16. For (a)–(d), we need 2.14, 3.10, 4.15, 7.5, and 7.10.

(a) See DRAWINGS 14.56 at the end of this chapter for the solution.

(b) See DRAWING 14.57 at the end of this chapter for the solutions.

(c) See DRAWINGS 14.58 at the end of this chapter for the solutions.

(d) See DRAWING 14.59 at the end of this chapter for the solutions.

(e) 4.15 and 7.5; see DRAWING 14.60 at the end of this chapter for the solutions.

(f) 7.5; see DRAWING 14.61 at the end of this chapter for the solutions.

(g) Law of Cosines 7.1 and Law of Sines 7.7; see DRAWINGS 14.62 at the end of this chapter for
solutions.

(h) 3.10 and 7.10 imply DRAWINGS 14.63 at the end of this chapter.

We could now use Law of Sines 7.7 for the remaining side:

x

sin(120)
=

10
sin(30)

→ x =
√

3
2

(
10
1
2

)
= 10

√
3;

OR the Law of Cosines 7.1:

x2 = 102 + 102 − 2× 10× 10× cos(120) = 200− 200(−1
2
) = 300 → x = 10

√
3.

Example 14.17. This is 4.15, 6.3, 6.4, and 7.5. See DRAWING 14.64 at the end of this chapter
for solutions.

Example 14.18. This is 5.3. See DRAWING 14.65 at the end of this chapter for the solutions.
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Example 14.19. (a) ⇐⇒ (b). Note that

‖
−−→
DE‖
‖
−−→
DA‖

=
‖
−−→
DE‖[

‖
−−→
DE‖+ ‖

−→
EA‖

] =
1[

1 + ‖
−→
EA‖
‖
−−→
DE‖

] ;
similarly,

‖
−−→
DC‖
‖
−−→
DB‖

=
1[

1 + ‖
−−→
CB‖
‖
−−→
DC‖

] .
Let x ≡ ‖

−−→
DE‖
‖
−→
EA‖

and y ≡ ‖
−−→
DC‖
‖
−−→
CB‖

.

The equivalence of (a) and (b) now follows from the equivalence of
1

1 + 1
x

=
1

1 + 1
y

(this equality is assertion (a)) and x = y (this equality is assertion (b)),

for positive x and y

(a) → (d). Let α ≡ ‖
−−→
DE‖
‖
−−→
DA‖

= ‖
−−→
DC‖
‖
−−→
DB‖

.

Then (see DRAWING 14.67 at the end of this chapter)
−−→
EC = (1−α)

−−→
DA+

−−→
AB + (1−α)

−−→
BD = (1−α)

[−−→
BD +

−−→
DA

]
+
−−→
AB = (1−α)

[
−
−−→
AB
]
+
−−→
AB = α

−−→
AB,

which gives us (d).
This argument also shows that (a) → (e), but we prefer to get to (e) via (d) and (c), to get all

the equivalences.

(d) → (c). Proposition 3.6 implies that the measure of the angle DEC equals the measure of the
angle EAB and the measure of the angle DCE equals the measure of the angle CBA (see DRAWING
14.68 at the end of this chapter). This is AAA, equality of angle measures in the triangles DEC and
DAB, which, by Theorem 10.1(b), implies similarity.

(c) → (e) is Proposition 8.5.

(e) → (a) is immediate: (e) appears to be (a), with extra information. �

Notice the string of implications coming full circle

(a) → (b) → (a) → (d) → (c) → (e) → (a),

and picking up all the assertions along the way.
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APPENDIX ZERO: The Language of Sets, Logic, and Functions.

Aside from the social aspect of making harmonious noise, the purpose of speaking or writing is
the communication of ideas. The language of mathematics is compact, (almost) unambiguous, and
precise. Here we present a brief dictionary.

Definitions APP0.1: Sets. A set is, informally, a collection of objects, or a bunch of things in
a paper bag; in practice, a paper bag is replaced by a pair of set brackets {. . . }, with something
between them (unless it is the empty set φ, to be thought of as a pair of set brackets with nothing
between them { }).

For example, {2,
√

5,universal truth,my pet wolverine, {π}} is the set containing 2,
√

5, univer-
sal truth, my pet wolverine, and the set {π}.

A set is not defined rigorously, because any system of definitions must begin with something
that is undefined (try using a dictionary to look up a word, then look up the words defining that
word, then look up the words you last read, . . . ; eventually, you will come full circle to the original
word you first looked up). Sets are the one and only undefined idea in mathematics, from which all
other ideas are defined. For example,

0 ≡ φ (the empty set), 1 ≡ {φ, {φ}} = {0, {0}}, 2 ≡ {{0, {0}}, {{0, {0}}}} = {1, {1}},
etc.; all the counting numbers 0, 1, 2, . . . are generated this way, with

(n+ 1) ≡ {n, {n}},
for n = 0, 1, 2, 3, . . . .

Here are the primary operations on sets. See DRAWINGS APP0.1 at the end of this appendix for
the standard pictures called Venn diagrams, with a large rectangle for the universe of all possibilities
of interest at the moment.

The complement of a set A, denoted Ac, is everything not in A.

The union of two sets A and B, denoted (A
⋃

B), is everything in A or B or both.

The intersection of two sets A and B, denoted (A
⋂

B), is everything in both A and B.

Definitions APP0.2: Logic. All reasoning begins with an unproven assumption, called a postu-
late or postulates, analogous to all definitions beginning with something that is not defined, such
as a set.

Logic connects facts that are true (or assumed to be true) to other facts that will inevitably
also be true. Those initial, possibly assumed, facts are called premises, and the inevitably true
facts that follow are called conclusions. A sequence of logically connected assertions beginning with
the premises and ending with the conclusions is called an argument. Perhaps we should say logical
argument to distinguish from emotional or threatening tirades, or ad hominem or non sequitur diver-
sions, that persuade for all the wrong reasons; a mathematical proof, or proof for short, consists
purely of logical arguments, thus the “logical” is usually left assumed but not stated. Expositions of
mathematics should try to make it clear when an assertion is made without presenting its argument.

A natural goal in a personal, or shared, set of beliefs, is to minimize the number of postulates,
from which logic will produce all the other beliefs.

The most important connective in logic is implication:

“A implies B,” denoted A → B, means that, when A is true, B is automatically also true.

For example, if A is “I am a primate” and B is “I am a mammal,” then A → B, in English, is
“being a primate implies being a mammal.”
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For another example, let A be “I live in Ohio” and B be “I live in North America,” then A →
B, in English, is “living in Ohio implies living in North America.”

Notice that both examples of implications above involve set containment: the set of all primates
is contained in the set of all mammals, and Ohio is contained in North America.

Here are some synonyms for implication: A implies B is also written

“If A, then B,” e.g., “If I am a primate, then I am a mammal,” or “If I live in Ohio, then I live in
North America”;

“B if A,” e.g., “I am a mammal if I am a primate,” or “I live in North America if I live in Ohio”;

“B is necessary for A,” e.g., “If I am a primate, then it is necessary that I be a mammal,” or “If
I live in Ohio, then it is necessary that I live in North America”;

“A is sufficient for B,” e.g., “In order that I be a mammal, it is sufficient that I be a primate,”
or “To live in North America, it is sufficient to live in Ohio”;

“B follows from A,” e.g., “being a mammal follows from being a primate,” or “being in North
America follows from being in Ohio”;

“B is a consequence of A,” e.g., “being a mammal is a consequence of being a primate,” or “being
in North America is a consequence of being in Ohio”;

“A only if B,” e.g., “I am a primate only if I am a mammal,” or “I live in Ohio only if I live in
North America”;

“A, therefore B,” e.g., “I am a primate, therefore I am a mammal,” or “I live in Ohio, therefore
I live in North America.”

There are probably many more such synonyms.

In practice, we create strings of implications, A → B, B → C, C → D, . . . , from which it follows
that A → C, A → D, etc. (implication is transitive).

Here is probably the most famous or infamous example of this type of argument: Socrates is a
carbon-based life form, all carbon-based life forms all mortal, therefore Socrates is mortal. We could
translate this as A ≡ I am Socrates, B ≡ I am a carbon-based life form, C ≡ I am mortal, then A
→ B and B → C, thus A → C.

There is no limit to how long a string of implications A1 → A2 → A3 → A4 → . . . can be.
Think of this as a sequence of dominoes, with each domino Ak knocking over the next domino Ak+1;
provided we start the logical process by knocking over the first domino A1 (asserting the truth of
our premise) eventually all the dominoes are knocked over (asserting the truth of our conclusions);
that is, we conclude that A1 → A2, A1 → A3, A1 → A4, . . . . See DRAWING APP0.2 at the end of
this appendix.

We say that two statements A and B are equivalent, denoted A ⇐⇒ B or “A if and only if
B” or “A is necessary and sufficient for B,” if we have both (A → B) and the converse (defined
below) implication (B → A).

For example, “my wolverine is between two and three feet long” is equivalent to “my wolverine
is less than three feet long and my wolverine is more than two feet long”; in symbols,

[2 < x < 3] ⇐⇒ [x > 2 and x < 3] ,

where x is the length of my wolverine.
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More generally, any set of n assertions A1, A2, . . . , An is said to be equivalent if the truth of one
of the assertions implies the truth of all the others; that is, for 1 ≤ j ≤ n, Aj → Ai, for 1 ≤ i ≤ n.

Equivalence of A1, A2, . . . , An is usually shown with a full circle of implications, such as

A1 → A2 → A3 → . . . An → A1.

The converse of (A → B) is (B → A). For example, the converse of “If I am a primate, I am a
mammal” is “If I am a mammal, I am a primate. Although the first implication is true, its converse
is false, since there are many mammals that are not primates. Thus being a primate is not equivalent
to being a mammal.

The contrapositive of (A → B) is [(not B) → (not A)]. For example, the contrapositive of “If I
am a primate, I am a mammal” is “If I am not a mammal, I am not a primate.” Every implication
is equivalent to its contrapositive.

Closely related to contrapositive is proof by contradiction. To prove a conclusion, call it B, we
assume B is false and show that this leads to something we know is not true (this is the “contradic-
tion”). In particular, if our desired result is A → B, proof by contradiction could consist of assuming
B is false and showing that this leads to the contradiction of the assumed A being false; that would
be exactly showing the contrapositive (not B) → (not A).

Here is an example. A prime number is a positive integer that is divisible only by itself and 1.
For example, 6 is not prime, because it equals 2× 3; 6 is divisible by 2.

We will prove by contradiction that there are infinitely many prime numbers:
Suppose there are not infinitely many primes; that is, there are only a finite number of prime
numbers, call them p1, p2, . . . , pN , where we have listed the prime numbers in increasing order. In
particular, our supposition implies that there is a largest prime number, that we have denoted pN .

Let M ≡ (p1 × p2 × p3 × · · · × pn), the product of all the prime numbers.
If pk(k = 1, 2, 3, . . . N) is any prime number, since pk divides M, it cannot divide (M + 1).

This implies (since every positive integer is a product of prime numbers) that no number besides 1
and (M + 1) divides (M + 1). Thus (M + 1) is a prime number larger than pN . Since pN was the
largest prime number, we have reached a contradiction. This implies that our original assumption
that there are finitely many prime numbers must be false; that is, there are infinitely many prime
numbers.

An assumption is made without loss of generality if it does not limit the scope of an assertion.
For example, if we are proving a result about areas of polygons, we may assume, without loss of
generality, that one side of the polygon is on the positive x axis, because area is unchanged by
rotations and translations (see Theorem 8.3).

Formal logic, with all assertions either true or false at a given moment, is missing the ingredient
of probability. Aristotle, the founder of formal logic, acknowledged this limitation, as in “there will
be a sea battle tomorrow.”

For those familiar with conditional probability, the statement “the probability of B, given A, is
equal to 100 percent,” can be recognized as the implication A → B. More interesting and realistic
scenarios appear when the “100 percent” is shrunk.
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The remaining pair of definitions may not be necessary for this text, but are very useful, funda-
mental, and simplifying ideas.

Definitions APP0.3: Functions. If X and Y are two sets, a function f from X to Y, written

f : X → Y,

is a rule that associates, to each x in X, a unique f(x) in Y. See DRAWING APP0.3 at the end of
this appendix.

f(x) (reads “f of x”) is the image of x under f ; we also say that f maps x to f(x).

The word “function” is English usage. For example, the area of a square of side x is f(x) ≡ x2;
we would say that “area is a function of the length of a side” to mean that area is determined by
the length of a side. Or, closer to home, “your grade in a math class is a function of time spent
studying.”

Note the practical value of this functional relationship. Length is easy to measure (e.g., pace
it off with one-yard steps), while area is difficult to measure directly: you’d need to try to place
concrete squares of the same size into the region whose area you want. If you want to know how
many seeds to buy to plant in this region, it’s very convenient to measure only length.

Note that the function f is neither the set X nor the set Y ; it is the relationship between points
x in X and f(x) in Y. More dynamically, it should be thought of as the action of moving from x to
f(x). In the example just given, f is neither length nor area; it is the relationship between length
and area, the act of squaring. In general, a function should be thought of as a verb, doing something
to points in the domain.

The inverse function, denoted f−1, of the function f from Definitions APP0.3, is a function from
Y to X such that

f−1(f(x)) = x for all x in X and f(f−1(y)) = y for all y in Y.

See DRAWING APP0.4 at the end of this appendix.

Note that f−1 cannot exist if either of the pictures in DRAWINGS APP0.5 at the end of this
appendix occur.

For example, say X is the set of all pets, Y is the set of all pet owners, and, for any pet x, f(x)
is that pet’s owner. The function f has an inverse only if no pet owner has multiple pets; the inverse
function f−1 then maps a pet owner to said owner’s only pet.

The inverse function f−1 undoes whatever f did, leaving you back where you started before f
got applied. Examples of this are mythical weight-loss medicines, returning you immediately to your
pre-overeating state, and apologetic phone calls, undoing whatever damage your careless words did.
We leave it to relationship experts to determine if the careless-words function really has an inverse
function.
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APPENDIX ONE: Integration, Area, and Volume.

In this section, APP1.1 through APP1.7 is needed only for the proofs in Chapter IX and the
additivity of area mentioned in Remarks 2.5. Proposition APP1.9 is needed for Theorem 12.4.
APP1.10 and APP1.11 are needed for Theorem 12.8.

This section will consider two-dimensional regions of the form

R ≡ {(x, y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)},
for a < b, g1, g2 piecewise-continuous functions on [a, b] with g1(x) ≤ g2(x) for a ≤ x ≤ b. See
Remarks 2.5 and DRAWING APP1.1 at the end of this appendix.

Integration extends the definition of area in the Postulates in the Introduction to the area of R
with Riemann sums:

area of R =
∫ b

a

(g2(x)− g1(x)) dx ≡ lim
n→∞

n∑
k=1

[
(g2 − g1)(a+ k

(b− a)
n

)
] [

(b− a)
n

]
See DRAWING APP1.2 at the end of this appendix.

The first thing worth noting is that area is additive because integration is additive.

Proposition APP1.1. If R1 and R2 are regions that overlap at most on a curve, then the area of
the union of R1 and R2 equals the sum of the areas of R1 and R2.

Here are some special cases of and terminology for rigid motions of Definition 8.2 and Definitions
8.1.

Definitions APP1.2. For x0, y0 arbitrary real numbers, the translation of R by < x0, y0 > is

(R+ < x0, y0 >) ≡ {(x, y) | a+ x0 ≤ x ≤ b+ x0, g1(x− x0) + y0 ≤ y ≤ g2(x− x0) + y0}.

The reflection through the y axis is the map f(x, y) ≡ (−x, y); the reflection through the x
axis is the map g(x, y) ≡ (x,−y).

The reflection of a set of points S through an axis is

{(−x, y) | (x, y) is in S} (through the y axis) or {(x,−y) | (x, y) is in S} (through the x axis).

See DRAWING APP1.3 at the end of this appendix.

Proposition APP1.3. The area of (R+ < x0, y0 >) equals the area of R.

Proof: The area of (R+ < x0, y0 >) is∫ b+x0

a+x0

((g2(x− x0) + y0)− (g1(x− x0) + y0)) dx,

which, after the change of variables s ≡ (x− x0), becomes the integral for the area of R. �

Corollary APP1.4. The area of a triangle with vertices I, (I + ~a) and (I +~b) is a function only
of ~a and ~b.

We may also give quick calculus arguments for invariance of area under reflections through axes.

Proposition APP1.5. The area of R reflected through either axis equals the area of R.
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Proof: R reflected through the y axis is

{(x, y) | − b ≤ x ≤ −a, g1(−x) ≤ y ≤ g2(−x)},
thus its area is∫ −a

−b
(g2(−x)− g1(−x)) dx =

∫ a

b

(g2(s)− g1(s)) d(−s) =
∫ b

a

(g2(s)− g1(s)) ds.

R reflected through the x axis is

{(x, y) | a ≤ x ≤ b,−g2(x) ≤ y ≤ −g1(x)},
whose area is ∫ b

a

(−g1(x)− (−g2(x))) dx =
∫ b

a

(g2(x)− g1(x)) dx.

�

Corollary APP1.6. Let ~a,~b be vectors. The area of a parallelogram formed by ~a,~b is twice the
area of a triangle formed by ~a,~b.

Proof: See DRAWING APP1.4 at the end of this appendix. By Proposition APP1.5, the triangle
formed by (−~a), (−~b) has the same area as the triangle formed by ~a,~b, since the former triangle
(with ~a,~b in standard position) is the reflection, through both axes, of the latter triangle. Since a
parallelogram formed by ~a,~b is the union of those two triangles, the result follows. �

Corollary APP1.7. The area of a right triangle with a horizontal leg is one half the product of
the lengths of the two perpendicular sides.

Proof: This follows from Corollary APP1.6, with the parallelogram a rectangle as in Postulate (2)
in the Introduction. �

Fundamental Theorem of Calculus APP1.8. If the derivative f ′ is continuous on an interval
[a, b], then ∫ b

a

f ′(x) dx = f(b)− f(a).

See APP3.6 for derivatives of sines and cosines.

Proposition APP1.9. Suppose 0 ≤ θ ≤ π
2 . Then the closed sector of the unit disc x2 + y2 ≤ 1

determined by the arc {eiψ | 0 ≤ ψ ≤ θ} (see DRAWINGS APP1.5 at the end of this appendix) has
area θ

2 .

Proof: This area is (see DRAWINGS APP1.5 at the end of this appendix)

1
2

sin θ cos θ+
∫ 1

cos θ

√
1− x2 dx =

1
4

sin(2θ) +
∫ 0

θ

√
1− (cosφ)2 d(cosφ) =

1
4

sin(2θ) +
∫ 0

θ

√
(sinφ)2 (− sinφ) dφ

=
1
4

sin(2θ) +
∫ θ

0

(sinφ)2 dφ =
1
4

sin(2θ) +
∫ θ

0

1
2
(1−cos(2φ)) dφ =

1
4

sin(2θ) +
1
2

(
φ− 1

2
sin(2φ)

)
|θ0 =

θ

2
,

by APP1.7, 6.3, and 6.4. �

Definitions APP1.10. As with area at the beginning of this section, we could extend the definition
of the volume of a box, in Definitions 12.6, via two-dimensional analogues of Riemann sums. We
prefer the following approach, which will allow us to use only one-dimensional integrals.

Let R be a subset of R3, a and b real numbers such that

R is contained in {(x, y, z) | a ≤ z ≤ b}.



433

For any fixed z0 with a ≤ z0 ≤ b, we want to intersect R with the plane z = z0 parallel to the
Cartesian plane: let

Rz0 ≡ R ∩ {(x, y, z0) | (x, y) is in R2},
and let A(z0) ≡ the area of Rz0 . See DRAWING APP1.6 at the end of this appendix.

Then the volume of R is

V (R) =
∫ b

a

A(z) dz.

Think of R as a loaf of bread, with the variable z running through the length of R. If we slice
the bread at a particular value of z, we are exposing a cross-section of R, like the side of a slice of
the loaf; A(z) is the corresponding area of the side of that slice. We could cut up the entire loaf
into thin slices, of varying areas A(z). Intuitively, A(z) dz is the volume of one of those thin slices
of bread; integrating those areas dz is like putting the slices back together to get the entire loaf and
its volume.

Implicit in this volume formula is the assumption that, for each z, we may calculate the area
A(z) of Rz, and that the function z 7→ A(z) is continuous.

Now we may address the particular volume formulas from Theorem 12.8.

APP1.11: Proof of Theorem 12.8. We use Definitions APP1.10.

(b) For R a generalized cylinder of height H and base Ω, for any z, 0 ≤ z ≤ H,

A(z) = (area of Ω),

thus

V (R) =
∫ H

0

A(z) dz =
∫ H

0

(area of Ω) dz = (area of Ω)H.

(a) follows from (b) and Theorem 12.4.

(d) For R a generalized cone of height H and base Ω, by Theorem 8.3,

A(z) =
(
H − z

H

)2

(area of Ω) (0 ≤ z ≤ H),

thus

V (R) =
∫ H

0

A(z) dz =
∫ H

0

(
H − z

H

)2

(area of Ω) dz = (area of Ω)
(
−1
3H2

)
(H−z)3|H0 =

1
3
(area of Ω)H.

(c) follows from (d) and Theorem 12.4.

(e) As with length and area, volume is not affected by translation, thus we may assume (a, b, c) =
(0, 0, 0); that is, R is {(x, y, z) |x2 + y2 + z2 ≤ r2}. See DRAWING APP1.7 at the end of this
appendix.

For −r ≤ z ≤ r (see DRAWING APP1.7 at the end of this appendix),

A(z) = area of {(x, y) |x2 + y2 ≤ (r2 − z2)} = π(r2 − z2),

by Theorem 12.4, thus

V (R) =
∫ r

−r
π(r2 − z2) dz = 2

∫ r

0

π(r2 − z2) dz = 2π(r2z − 1
3
z3)|r0 = 2π(r3 − 1

3
r3) =

4
3
πr3.

�
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APPENDIX TWO: Complex Integration and Arclength.

This section will consider curves in the complex plane. We will produce the additivity of length
mentioned in Remarks 2.5. This section will also be used for the beginning of the proof of Theorem
8.3, regarding translation. We will also use Definitions APP2.1 in APP3.3 and APP3.5, in Appendix
Three.

Definitions APP2.1. A curve in R2 or C is the image

L ≡ {f(t) | a ≤ t ≤ b}
of a continuous function f : [a, b] → C, a < b.

As with a line, there is an implied sense of motion, if we think of t as being time: a slug begins
at f(a) and travels, as t increases, along L until it arrives at f(b). The curve L consists only of the
trail left by the slug, without any arrows or other indications of a trip occurring.

See DRAWING APP2.1 at the end of this appendix.

Integration, at least when f ′ is piecewise continuous and f(t1) = f(t2) for only finitely many
t1 6= t2, extends the definition of length in the Postulates in the Introduction to the length of L
with what turn out to be almost Riemann sums

length of L =
∫ b

a

|f ′(t)| dt = lim
n→∞

n∑
k=1

|f(tk)− f(tk−1)| (tj ≡ (a+
j

n
(b− a)), j = 0, 1, 2 . . . , n).

Note that, thinking of f(t) as a point in R2, for a ≤ t ≤ b, as in 1.16,
−−−−−−−→
f(t0)f(t1),

−−−−−−−→
f(t1)f(t2),

−−−−−−−→
f(t2)f(t3), . . . ,

−−−−−−−−−→
f(tn−1)f(tn)

is a sequence of line segments, called a polygonal path, approximating L, so that
n∑
k=1

|f(tk)− f(tk−1)| =
n∑
k=1

‖
−−−−−−−−−→
f(tk−1)f(tk)‖,

the length of said polygonal path, approximates the length of L.

See DRAWING APP2.2 at the end of this appendix, where we have drawn the polygonal path
in red.

As with area (see Proposition APP1.1), length is additive because integration is additive.

Proposition APP2.2. If L1 and L2 are curves that share an endpoint and otherwise do not
overlap, then the length of the union of L1 and L2 equals the sum of the lengths of L1 and L2.

Again as with area, let x0, y0 be arbitrary real numbers and define the translation of L by
< x0, y0 > to be

(L+ < x0, y0 >) ≡ {f(t)+ < x0, y0 > | a ≤ t ≤ b}.

With reflection as in Definition APP1.2, the same arguments as with area give invariance of
length under translation and reflection.

Proposition APP2.3. (a) The length of (L+ < x0, y0 >) equals the length of L.

(b) The length of L reflected thru either axis equals the length of L.
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APPENDIX THREE: Complex Exponentials, Arclength, and Angles.

Definition APP3.1. Define a function exp : C → C by exp(z) ≡
∑∞
k=0

zk

k! .

The following is Theorem 1.12, with an additional factoid (3) added.

Theorem APP3.2. For any complex z, w,

(1)
exp(z + w) = exp(z) exp(w),

(2)
exp(z) = exp(z),

(3) d
dz exp(z) = exp(z).

Proof: (1)

exp(z + w) =
∞∑
k=0

(z + w)k

k!
=

∞∑
k=0

1
k!

k∑
j=0

(
k

j

)
zjwk−j =

∞∑
j=0

∞∑
k=j

zjwk−j

j!(k − j)!

=
∞∑
j=0

∞∑
`=0

zjw`

j!(`)!
=

 ∞∑
j=0

zj

j!

( ∞∑
`=0

w`

`!

)
= (exp(z)) (exp(w)) .

(2) follows from Conjugation Lemma 1.10(2) and (3).

(3) d
dz exp(z) =

∑∞
k=1

1
k!

(
kzk−1

)
=
∑∞
k=1

zk−1

(k−1)! =
∑∞
j=0

zj

j! ≡ exp(z).

Here is an explicit definition or formula for π, from Definition 2.7.

Proposition APP3.3. π =
∫ 1

−1
dt√
1−t2 .

Proof: The upper half of the unit circle {(x, y) | y ≥ 0 and x2 + y2 = 1} equals

{f(t) | −1 ≤ t ≤ 1}, where f(t) ≡ (t,
√

1− t2),

thus, by Definitions APP2.1,

π =
∫ 1

−1

|f ′(t)| dt =
∫ 1

−1

|(1, −t√
1− t2

)| dt =
∫ 1

−1

√
1 +

(
−t√
1− t2

)2

dt =
∫ 1

−1

√
1 +

t2

(1− t2)
dt

=
∫ 1

−1

√
1

(1− t2)
dt =

∫ 1

−1

dt√
1− t2

.

�

Part (b) of the following is a very special case of very general results about uniqueness of solutions
of differential equations, whose proof we include so that we may say first-year calculus is sufficient
prerequisite for the appendices.

We use here the terminology, for f : [0, π] → [−1, 1],

f ′(0+) ≡ lim
θ→0+

f ′(θ).

Lemma APP3.4. (a)
[
Re(eiθ)

]′ = −
[
Im(eiθ)

]
, for all real θ.

(b) Suppose f : [0, π] → [−1, 1] is continuous on [0, π] and twice differentiable on (0, π) with

f ′′(θ) = −f(θ) (0 < θ < π), f(0) = 1, f ′(0+) = 0. (∗)



443

Then
f(θ) = Re(eiθ),

for 0 ≤ θ ≤ π.

Proof: (a) For any real θ,

eiθ ≡
∞∑
k=0

(iθ)k

k!
=

∞∑
m=0

(iθ)2m

(2m)!
+

∞∑
m=0

(iθ)2m+1

(2m+ 1)!
=

[ ∞∑
m=0

(−1)m
θ2m

(2m)!

]
+ i

[ ∞∑
m=0

(−1)m
θ2m+1

(2m+ 1)!

]
,

thus[
Re(eiθ)

]′
=

[ ∞∑
m=1

(−1)m(2m)
θ2m−1

(2m)!

]
=

[ ∞∑
m=1

(−1)m
θ2m−1

(2m− 1)!

]
=

[ ∞∑
n=0

(−1)n+1 θ2(n+1)−1

(2(n+ 1)− 1)!

]

= −

[ ∞∑
n=0

(−1)n
θ2n+1

(2n+ 1)!

]
= −

[
Im(eiθ)

]
.

(b) A calculation very similar to the proof of (a) shows that
[
Im(eiθ)

]′ =
[
Re(eiθ)

]
, for all real θ.

Combined with (a), this shows that
f(θ) = Re(eiθ)

is a solution of (*).
To show that this is the only solution, suppose g is another solution; that is,

g′′(θ) = −g(θ) (0 < θ < π), g(0) = 1, g′(0+) = 0.

Define h ≡ (f − g). Then h satisfies

h′′(θ) = −h(θ) (0 < θ < π), h(0) = 0, h′(0+) = 0.

Showing that g must equal f (equivalent to the uniqueness of f) is equivalent to showing that
h must be the zero function; that is, h(θ) = 0 for 0 ≤ θ ≤ π.

Using the fundamental theorem of calculus twice, and performing a change of variables (see
DRAWING APP3.1 at the end of this appendix), for 0 < θ < π:

h′(θ) = h′(θ)− h′(0+) =
∫ θ

0

h′′(t) dt →

h(θ) = h(θ)−h(0) =
∫ θ

0

h′(s) ds =
∫ θ

0

∫ s

0

h′′(t) dt ds =
∫ θ

0

∫ θ

t

h′′(t) ds dt =
∫ θ

0

(θ−t)h′′(t) dt = −
∫ θ

0

(θ−t)h(t) dt.

Let “max” be short for “maxiumum.” The integral expression we just derived for h(θ) implies
that [

max0≤θ≤ 1
2
|h(θ)|

]
≤
∫ 1

2

0

1
2

[
max0≤θ≤ 1

2
|h(θ)|

]
dt =

1
4

[
max0≤θ≤ 1

2
|h(θ)|

]
;

this implies that
[
max0≤θ≤ 1

2
|h(θ)|

]
= 0, so that

h(θ) = 0 for 0 ≤ θ ≤ 1
2
.

This also implies that h′(θ) = 0 for 0 ≤ θ ≤ 1
2 .

A very similar argument (see DRAWING APP3.2 at the end of this appendix)) shows now that,
for 1

2 ≤ θ ≤ 1,

h(θ) =
∫ θ

1
2

∫ s

0

h′′(t) dt ds = −
∫ θ

1
2

(θ − t)h(t) dt−
∫ 1

2

0

(θ − 1
2
)h(t) dt = −

∫ θ

1
2

(θ − t)h(t) dt,
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and we may very similarly argue with
[
max 1

2≤θ≤1|h(θ)|
]

to show that

h(θ) = 0 for
1
2
≤ θ ≤ 1.

Continue advancing θ in steps of 1
2 to eventually reach

h(θ) = 0 for 0 ≤ θ ≤ π,

as desired.
�

APP3.5, Proof of Lemma 2.8. First we’ll prove the statement about the length of Cθ,R in
Lemma 2.8, for 0 ≤ θ ≤ 2π,R > 0.

By Definitions APP2.1, Corollary 1.14, and Theorem APP3.2(3), the length of Cθ,R equals∫ θ

0

| d
dt
Reit| dt =

∫ θ

0

|iReit| dt =
∫ θ

0

Rdt = Rθ.

For the other statement in Lemma 2.8, that every complex number z has a polar form, we will
first make two reductions.

Without loss of generality, we may assume that

(1) |z| = 1: if we show Lemma 2.8 for this special case, then, for any nonzero z, since z
|z| has absolute

value one, there’s real θ such that z
|z| = eiθ; we would then have z = |z|eiθ;

and

(2) Im(z) ≥ 0: if we show Lemma 2.8 for this special case, then, for Im(z) < 0, since Im(z) > 0,
there’s real θ so that z = eiθ, thus

z = eiθ = eiθ = ei(−θ)

by Theorem APP3.2(2).

Thus we are trying to get a polar form for z in

Ω ≡ {z | |z| = 1, Im(z) ≥ 0} = {(x+ i
√

1− x2 | − 1 ≤ x ≤ 1},
the upper half of the unit circle, as drawn in red in DRAWING APP3.3 at the end of this appendix.

Of importance is the relationship between points z in Ω and the length of the arc in Ω from z
to 1; see the definition of the function A below and DRAWING APP3.3 at the end of this appendix.
We will also find it convenient to project Ω onto [−1, 1], so that we may deal with the familiar (in
first-year calculus) setting of functions from the real line to itself; see the definition of the function
P below and DRAWING APP3.4 at the end of this appendix.

Define A : Ω → [0, π]: for z in Ω, A(z) is the length of the arc of the unit circle clockwise from
z to 1, as drawn in DRAWING APP.3.3 at the end of this appendix, with Ω drawn in red.

As in the proof of Proposition APP3.3, if z = x+ i
√

1− x2, for −1 ≤ x ≤ 1, then

A(z) = A(x+ i
√

1− x2) =
∫ 1

x

dt√
1− t2

.

Define also P : Ω → [−1, 1] by

P (x+ i
√

1− x2) ≡ x (−1 ≤ x ≤ 1).

See DRAWING APP3.4 at the end of this appendix, with Ω drawn in red.

Finally, define R : [−1, 1] → [0, π] by

R ≡ A ◦ P−1;
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that is,

R(x) ≡ A
(
P−1(x)

)
= A

(
x+ i

√
1− x2

)
=
∫ 1

x

dt√
1− t2

(−1 ≤ x ≤ 1).

Our goal will be to show that, for 0 ≤ θ ≤ π, A−1(θ) = eiθ, so that, for z in Ω, z = eiθ, with θ
equal to the arclength A(z) in DRAWING APP3.3 at the end of this appendix.

By the inverse function theorem, R−1 : [0, π] → [−1, 1] is continuous on [0, π] and differentiable
on (0, π), with, for 0 < θ < π,[

R−1
]′

(θ) =
1

[R′ (R−1(θ))]
=

1[
− 1√

1−(R−1(θ))2

] = −
√

1− (R−1(θ))2, (∗)

where the second equality is from the fundamental theorem of calculus.

Thus, still for 0 < θ < π,[
R−1

]′′
(θ) =

[
−
√

1− (R−1(θ))2
]′

=

[
R−1

]′ (θ) [R−1
]
(θ)√

1− (R−1(θ))2
= −

[
R−1

]
(θ). (∗∗)

Notice also that (R−1)(0) = 1, sinceR(1) = 0, while by (*)
[
R−1

]′ (0+) = −
√

1− (R−1(0))2 = 0,
thus by Lemma APP3.4(b) and (**), for 0 ≤ θ ≤ π,

R−1(θ) = Re(eiθ). (∗ ∗ ∗)

Since R = A ◦ P−1, we have A−1 = P−1 ◦ R−1; that is, for 0 ≤ θ ≤ π, by (*), (***), Lemma
APP3.4(a), and the continuity of A−1(θ) and eiθ (to extend the equality of A−1(θ) and eiθ from
(0, π) to [0, π]),

A−1(θ) = P−1
(
R−1(θ)

)
=
(
R−1(θ)

)
+ i

√
1− (R−1(θ))2 =

(
R−1(θ)

)
+ i
(
−
[
R−1

]′
(θ)
)

= Re(eiθ) + i
(
−
[
Re(eiθ)

]′)
= Re(eiθ) + iIm(eiθ) = eiθ.

Given z in Ω, let θ ≡ A(z). Then z = A−1(θ), which we have just shown to be equal to eiθ, the
desired polar form; see DRAWING APP3.5 at the end of this appendix, with Ω drawn in red. �

A consequence of the Chapter VI approach to sines and cosines (Definition 6.1) is a quite simple
derivation of their derivatives.

Proposition APP3.6. d
dθ cos θ = − sin θ, ddθ sin θ = cos θ.

Proof: By Theorem APP3.2(3),(
d

dθ
cos θ

)
+i
(
d

dθ
sin θ

)
=

d

dθ
(cos θ + i sin θ) =

d

dθ
eiθ = ieiθ = i(cos θ+i sin θ) = (− sin θ)+i (cos θ) .

�
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APPENDIX FOUR: Another Approach to Angle, Cosine, and Sine.

This section is independent of the rest of the book; it’s not needed for anything. It presents
another way to introduce sines and cosines without complex numbers, using integration to begin by
defining cos−1 .

We don’t recommend this approach for starting geometry; note, for example, how much more
awkward our definition of angle in Definition APP4.2 is, compared to Definitions 2.10. This section
is primarily of interest in its analogy to the calculus definition of exponentials by defining a certain
logarithm first.

Since angle will be defined as a certain curve length, we will consider, analogously to Appendices
One and Two, one-dimensional curves in R2

L ≡ {(x, y) | a ≤ x ≤ b, y = g(x)},
for a < b, g piecewise continuously differentiable. See DRAWING APP4.1 at the end of this appen-
dix.

Integration extends the definition of length in the Postulates of the Introduction to the length
of L with Riemann sums

length of L =
∫ b

a

√
1 + (g′(x))2 dx

= lim
n→∞

n∑
k=1

√(
(b− a)
n

)2

+
(
g

(
a+ k

(b− a)
n

)
− g

(
a+ (k − 1)

(b− a)
n

))2

.

See DRAWING APP4.2 at the end of this appendix.

Note that this definition of length is Definitions APP2.1, with f(t) ≡ (t, g(t)), for a ≤ t ≤ b.

We will apply the definition of length to the upper half of the unit circle

y = g(x) ≡
√

1− x2;

we have
dy

dx
= g′(x) =

−x√
1− x2

, hence
(
(1 + (g′(x))2

)
=

(1− x2) + x2

(1− x2)
=

1
(1− x2)

,

thus, for −1 ≤ x1 ≤ x2 ≤ 1, the length of the arc of the upper half (or the lower half; see Proposition
APP2.3) of the unit circle between x = x1 and x = x2 is∫ x2

x1

dt√
1− t2

.

See DRAWING APP4.3 at the end of this appendix.

Definition APP4.1. π ≡
∫ 1

−1
dt√
1−t2 .

Definition APP4.2. Let ~a and ~b be vectors. The counterclockwise (clockwise) angle from ~a

to ~b is the same as the counterclockwise (clockwise) angle from

< x1, y1 >≡ ~x1 ≡
~a

‖~a‖
to < x2, y2 >≡ ~x2 ≡

~b

‖~b‖
,

which we define as follows.

First, for any unit vectors ~x1, ~x2, the counterclockwise angle from ~x1 to ~x2 equals the clockwise angle
from ~x2 to ~x1 equals 2π minus the counterclockwise angle from ~x2 to ~x1.

This means we may restrict ourselves to defining the counterclockwise angle from ~x2 to ~x1, with
x1 ≤ x2.
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Here are the four cases.

(1) If y1 and y2 are nonnegative and x1 ≤ x2, then the angle is
∫ x2

x1

dt√
1−t2 .

See DRAWING APP4.3 at the end of this appendix.

(2) If y1 and y2 are both nonpositive, then the angle is
[
2π −

∫ x2

x1

dt√
1−t2

]
.

See DRAWING APP4.4 at the end of this appendix.

(3) If y1 is nonpositive and y2 is nonnegative, then the angle is
[∫ x2

−1
dt√
1−t2 +

∫ x1

−1
dt√
1−t2

]
.

See DRAWING APP4.5 at the end of this appendix.

(4) If y1 is nonnegative and y2 is nonpositive, then the angle is
[∫ 1

x2

dt√
1−t2 +

∫ 1

x1

dt√
1−t2

]
.

See DRAWING APP4.6 at the end of this appendix.

Definitions APP4.3. Our approach to cosine and sine will be very analogous to the calculus
definition of the natural exponential via its inverse, the natural logarithm lnx ≡

∫ x
1
dt
t .

For −1 ≤ x ≤ 1, define a function I by

I(x) ≡
∫ 1

x

dt√
1− t2

.

Note that I(x) is the arclength of the unit circle x2 + y2 = 1 counterclockwise from (1, 0) to
(x,

√
1− x2). See DRAWING APP4.7 at the end of this appendix.

The cosine function, restricted to [0, π], is the inverse of I :

cos |[0,π] ≡ I−1;

that is, ∫ 1

cos θ

dt√
1− t2

= θ,

for 0 ≤ θ ≤ π.
The sine function, restricted to [0, π], is defined by

sin |[0,π] ≡
√

1− (I−1)2.

See DRAWING APP4.8 at the end of this appendix.

Extend sine and cosine to the real line as follows.

For 0 ≤ θ ≤ π,
(cos(θ + π), sin(θ + π)) ≡ −(cos θ, sin θ).

For 0 ≤ θ ≤ 2π, k an integer,

(cos(θ + 2π), sin(θ + 2π)) ≡ (cos θ, sin θ).

This is the “unit circle definition” of sine and cosine, representing (cos θ, sin θ) as the point on
the unit circle x2 + y2 = 1 that has an arclength of θ counterclockwise from (1, 0).

See DRAWING APP4.9 at the end of this appendix.

Lemma APP4.4. Suppose f and g are continuous functions on R, D is a discrete subset of R, and,
for all real x not in D, f ′(x) exists and equals g(x). Then f is differentiable on R, with f ′(x) = g(x)
for all x ∈ R.

Proof: Fix x0 ∈ D. By continuity of g,

g(x0) = lim
x→x0

g(x) = lim
x→x0

(
d
dx (g(x)− g(x0))

d
dx (x− x0)

)
,



451

thus by L’Hôpital’s rule,

lim
x→x0

(
(g(x)− g(x0))

(x− x0)

)
exists and equals g(x0);

that is, f is differentiable at x0 and f ′(x0) = g(x0). �

Theorem APP4.5. For all real θ, ddθ cos θ = − sin θ and d
dθ sin θ = cos θ.

Proof: For −1 < x < 1, the fundamental theorem of calculus implies that

I ′(x) =
−1√
1− x2

.

By the definition of cosine and the inverse function theorem, for 0 < θ < π,

d

dθ
cos θ =

1
I ′(cos θ)

= −
√

1− (cos θ)2 ≡ − sin θ.

For 0 < θ < π,
d

dθ
sin θ ≡ d

dθ

(√
1− (cos θ)2

)
=

(−2 cos θ)(− sin θ)

2
√

1− (cos θ)2
= cos θ.

Still for 0 < θ < π,

d

dθ
(cos(θ + π), sin(θ + π)) ≡ d

dθ
(− cos θ,− sin θ) = (sin θ,− cos(θ)) ≡ (− sin(θ + π), cos(θ + π)) .

A similar argument shows that
d

dθ
(cos θ, sin θ) = (− sin θ, cos θ)

for any θ not in D ≡ {kπ | k is an integer}. Lemma APP4.4 extends this to all real θ. �

Corollary APP4.6.

cos θ =
∞∑
k=0

(−1)k
θ2k

(2k)!
, sin θ =

∞∑
k=0

(−1)k
θ2k+1

(2k + 1)!
,

Proof: This follows from Theorem APP4.5, the facts that cos(0) = 1 and sin(0) = 0, and the Taylor
series formula

g(x) =
∞∑
k=0

g(k)(0)
k!

xk.

Note that the uniform boundedness of all derivatives on the real line guarantees convergence of the
series to g(x), for g(x) ≡ cosx or sinx. �

Definition APP4.7. Define a function exp: C → C by exp(z) ≡
∑∞
k=0

zk

k! .

Two properties of exp are of interest to us, beginning with Chapter VI.

Theorem APP4.8 (a) For any complex z and w, exp(z + w) = (exp(z)) (exp(w)) .

(b) (Euler’s formula) For any real θ, exp(iθ) = cos θ + i sin θ.

Proof: (a) This was done in Theorem APP3.2.

(b) This follows from the definition of exp, Corollary APP4.6, and the behaviour of powers of (iθ):

(iθ)2k = (−1)kθ2k, (iθ)2k+1 = i
(
(−1)kθ2k+1

)
, for any integer k.
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A → B Definitions APP0.2; p. 423
A ↔ B Definitions APP0.2; p. 424
A if and only if B Definitions APP0.2; p. 424
A implies B Definitions APP0.2; p. 423
A is necessary and sufficient 
for B

Definitions APP0.2; p. 424

A is sufficient for B Definitions APP0.2; p. 424
A only if B Definitions APP0.2; p. 424
A, therefore B Definitions APP0.2; p. 424
AA Theorem 10.1(b); p. 238
AAA Theorem 10.1(b); p. 238
AAS Theorem 10.1(a); p. 238
absolute value (of a complex 
number)

Definitions 1.9; p. 12

adding a point to a vector Definition 1.6; p. 11
addition (of vectors) Definitions 1.4; p. 11
additivity (of lengths and 
areas)

Remarks 2.5; p. 26

amplitude Remarks 6.13(b); p. 153
angle (between non-parallel 
vectors)

Definitions 2.10; p. 28

angle (between vectors 
pointing in the same direction)

Definitions 2.10; p. 28

angle (clockwise) Definitions 2.10; p. 28 and Definition APP4.2; p. 449
angle (counterclockwise) Definitions 2.10; p. 28 and Definition APP4.2; p. 449
angle of elevation Definitions 7.4; p. 168
Angle-angle Theorem 10.1(b); p. 238
Angle-angle-angle Theorem 10.1(b); p. 238
Angle-angle-side Theorem 10.1(a); p. 238
arc (of a circle) Definitions 2.18; p. 31
arclength Definitions 2.18; p. 31
area (of a closed sector of a 
disc)

Theorem 12.4; p. 299

area (of a rectangle) Postulate (2); p. 2
area (of a trapezoid) Theorem 12.3; p. 298
B follows from A Definitions APP0.2; p. 424
B if A Definitions APP0.2; p. 424
B is a consequence of A Definitions APP0.2; p. 424
B is necessary for A Definitions APP0.2; p. 424
ball Definitions 12.7; p. 301
bisect Definitions 3.11; p. 70
bisected (angle) Definitions 3.11; p. 70
bisecting (with straight-edge 
and compass)

p. 320

boundary (of a closed sector) Definitions 2.18; p. 31
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boundary (of a disc) Definitions 2.6; p. 27
boundary (of a polygon) Definitions 2.3; p. 25

boundary (of a region in R2 

enclosed by a curve C)
Definitions 2.6; p. 27

box Definitions 12.6; p. 300
C (set of complex numbers) Definitions 1.8; p. 12
Cartesian plane Definitions 0.1; p. 6
Cauchy-Schwarz Inequality HWVI.1; p. 154
center (of a polygon) Remarks 13.8; p. 321
central angle Definitions 7.13; p. 173
chord Definitions 2.6; p. 27
circle Definitions 2.6; p. 26
circumference Definitions 2.6; p. 27
closed disc Definitions 2.6; p. 27
closed sector (of a disc) Definitions 2.18; p. 31
columns (of a matrix) Definitions 9.1; p. 224
compass p. 320
complement (of a set) Definitions APP0.1; p. 423
completing the square Definitions 0.6; p. 6
complex numbers Definitions 1.8; p. 12
complex plane C Definitions 1.8; p. 12
component (of a directed line 
segment or vector)

Definitions 1.1; p. 10

cone Definitions 12.7; p. 301
congruent (sets) Definitions 8.4; p. 216
conjugate (of a complex 
number)

Definitions 1.9; p. 12

constructible (angle) HWXIII.9; p. 325
constructible (length) HWXIII.9; p. 325
constructible (polygon) p. 320
constructing (with straight-
edge and compass)

p. 320

contrapositive Definitions APP0.2; p. 425
converse Definitions APP0.2; p. 425
convex (polygon) Definitions 2.3; p. 25
corresponding (sets) Definitions 8.4; p. 216
corresponds (measure) Definitions 8.4; p. 216
cosine Definitions 6.1; p. 148 and Definitions APP4.3; p. 450
cosine function (restricted to 
[0, π])

Definitions APP4.3; p. 450

cube Definitions 12.6; p. 300

curve (in R2 or C) Definitions APP2.1; p. 439
cylinder Definitions 12.7; p. 300
degrees Definition 2.17; p. 31
det Definition 9.4; p. 225
determinant Definition 9.4; p. 225
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diagonals (of a parallelogram) Definition 3.12; p. 70

diameter Definitions 2.6; p. 27
directed line segment Definitions 1.1

direction vector (for a half line) Definitions 2.1; p. 23

direction vector (for a line 
segment)

Definitions 2.1; p. 24

direction vector (for a line) Definitions 2.1; p. 23
distance (between two points 

in R2)
Definitions 0.2; p. 6

distance (from a point to a line) Definition 5.1; p. 116

division (of two complex 
numbers)

Definitions 1.8; p. 12

dot product Definition 4.1; p. 99
drawing (with straight-edge 
and compass)

p. 320

edge (of a polygon) Definitions 2.3; p. 25
endpoint (of a line segment) Definitions 2.1; p. 24
equal vectors (two directed 
line segments represent the 
same vector)

Definition 1.2; p. 10

equation (of a line in R2) Definition 0.3; p. 6
equilateral triangle HW VII.5; p. 176 and p. 320
equivalent (assertions) Definitions APP0.2; p. 425
Euler's formula Definition 6.2; p. 148 and Theorem APP4.8; p. 451
exp : C → C Definition APP3.1; p. 442 and Definition APP4.7; p. 451
exp(z) (infinite series 
definition)

Definition APP4.7; p. 451

exponential function (the) p. 13
exterior angle (of a polygon) Definitions 2.16; p. 30

fA : R2 → R2 Definition 9.3; p. 224

frequency Remarks 6.13(b); p. 153
function Definitions APP0.3; p. 426
Fundamental Theorem of 
Calculus

APP 1.8; p. 432

generalized cone Definitions 12.7; p. 301
generalized cylinder Definitions 12.7; p. 301
half line Definitions 2.1; p. 23
height (of a trapezoid) Definitions 12.2; p. 298
hexagon p. 320
hypotenuse Definitions 7.4; p. 168
I(x) Definitions APP4.3; p. 450
Id p. 229
identity map p. 229
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If A, then B Definitions APP0.2; p. 424
Im(z) Definitions 1.8; p. 12
image (of a function) Definitions APP0.3; p. 426
image (of a point/vector) Definitions 8.1; p. 215
imaginary axis iR Definitions 1.8; p. 12
imaginary numbers Definitions 1.8; p. 12
imaginary part (of a complex 
number)

Definitions 1.8; p. 12

initial point (of a directed line 
segment or vector)

Definitions 1.1; p. 10

initial point (of a line) Definitions 2.1; p. 23
inner product Definition 4.1; p. 99
inscribed angle Definitions 7.13; p. 173
inside (of a polygon) Definitions 2.3; p. 25
interior (of a polygon) Definitions 2.3; p. 25
interior angle (of a polygon) Definitions 2.16; p. 30
intersection (of two sets) Definitions APP0.1; p. 423
inverse cosine Definition 6.7; p. 151
inverse function Definitions APP0.3; p. 426
isosceles triangle Definition 5.9; p. 118
Law of Cosines Theorem 7.1; p. 167
Law of Sines Theorem 7.7; p. 170
left half plane Definitions 0.1; p. 6
legs (of a right triangle) Definitions 7.4; p. 168
length (of a curve) Definitions APP2.1; p. 439
length (of a vector) Definitions 2.4; p. 25
line Definitions 2.1; p. 23

line (in R2) Definition 0.3; p. 6
line segment Definitions 2.1; p. 24
lower half plane Definitions 0.1; p. 6
magnification (of a 
point/vector)

Definitions 8.1; p. 216

magnification factor p. 227
magnitude (of a vector) Definitions 2.4; p. 25
map Definitions APP0.3; p. 426
mathematical proof Definitions APP0.2; p. 423
matrix Definitions 9.1; p. 224
measure (of a clockwise 
angle)

Definitions 2.10; p. 28

measure (of a 
counterclockwise angle)

Definitions 2.10; p. 28

measure (of the angle 
between vectors pointing in 
the same direction)

Definitions 2.10; p. 28

midpoint (of a line segment) Definitions 3.11; p. 70
multiplication (of matrices) Definition 9.2; p. 224
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multiplication (of two complex 
numbers)

Definitions 1.8; p. 12

multiplication (of vector by real 
number)

Definitions 1.4; p. 11

norm (of a vector) Definitions 2.4; p. 25
octagon p. 320
open disc Definitions 2.6; p. 26
origin Definitions 1.3; p. 11
orthogonal (matrix) Definition 9.10; p. 227
orthogonal (vectors) Definition 4.3; p. 99
orthogonal projection (of a 
vector onto a line)

Definition 4.6; p. 100

orthogonal projection (of a 
vector onto a vector)

Definition 4.6; p. 100

parallel "postulate" Proposition 3.2; p. 68
parallel (line segments) Definitions 2.1; p. 24
parallel (vectors) Definitions 1.5; p. 11
parallelogram Definitions 2.3; p. 25
parallelogram formed by two 
vectors)

Definitions 2.3; p. 25

pentagon p. 320

perimeter (of a closed sector) Definitions 2.18; p. 31

perimeter (of a polygon) Definitions 2.4; p. 26

periodicity (of sine and cosine) Some Properties 6.3; p. 149

perpendicular (vectors) Definition 4.3; p. 99
perpendicular bisector (of a 
line segment)

Definition 5.8; p. 118

pi Definition 2.7; p. 27 and Definition APP4.1; p. 449
π Definition 2.7; p. 27 and Definition APP4.1; p. 449
pointing in the opposite 
direction (vectors)

Definitions 1.5; p. 11

pointing in the same direction 
(vectors)

Definitions 1.5; p. 11

polar form (of a complex 
number)

Definition 1.15; p. 14

polygon Definitions 2.3; p. 25
polygonal region Definitions 2.3; p. 25
position vector Definitions 1.3; p. 11
postulate Definitions APP0.2; p. 423
postulates Postulates; p. 2
prime number Definitions APP0.2; p. 425
proof Definitions APP0.2; p. 423
proof by contradiction Definitions APP0.2; p. 425

properties (of the dot product) Some Properties 4.5; pp. 99-100
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pyramid Definitions 12.7; p. 301
Pythagorean theorem Proposition 4.15; p. 103
quadratic equation Definitions 0.6; p. 7
quadratic formula Definitions 0.6; p. 7
quadrilateral Definitions 2.3; p. 25
R Chapter 0; p. 6

R2 Definitions 0.1; p. 6

R3 Definitions 12.6; p. 300
ray Definitions 2.1; p. 23
Re(z) Definitions 1.8; p. 12
real axis R Definitions 1.8; p. 12
real numbers Chapter 0; p. 6
real part (of a complex 
number)

Definitions 1.8; p. 12

rectangle Definitions 5.4; p. 117
reflection (map) Definitions APP1.2; p. 431
reflection (of a point/vector) Definitions 8.1; p. 216
reflection (of a set of points) Definitions APP1.2; p. 431
regular (polygon) p. 320
rhombus Definitions 5.4; p. 117
right angle Corollary 2.14; p. 30 and Definitions 7.4; p. 168
right half plane Definitions 0.1; p. 6
right triangle Definitions 7.4; p. 168
rigid motions Definition 8.2; p. 216
rotation (of a point/vector) Definitions 8.1; p. 215
rows (of a matrix) Definitions 9.1; p. 224

SAS Examples 7.2 Solutions (a); p. 168 and Theorem 10.1; p. 238

septagon p. 320
set Definitions APP0.1; p. 423
sharp end (of a compass) p. 320
side (of a polygon) Definitions 2.3; p. 25

side-angle-side Examples 7.2 Solutions (a); p. 168 and Theorem 10.1; p. 238

side-side-angle Examples 7.2 Solutions (b); p. 168 and Theorem 10.7; p. 241

Side-side-side Theorem 10.1(a); p. 238
similar (sets) Definitions 8.4; p. 216
sine Definitions 6.1; p. 148 and Definitions APP4.3; p. 450
sine function (restricted to [0, 
π])

Definitions APP4.3; p. 450

slope (of a line in R2) Definition 0.4; p. 6
square Definitions 5.4; p. 117
square p. 320

SSA Examples 7.2 Solutions (b); p. 168 and Theorem 10.7; p. 241
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SSS Theorem 10.1(a); p. 238
standard matrix (for fA) Definition 9.3; p. 224
standard position Definitions 1.3; p. 11
straight-edge p. 320
supplementary angles p. 69
tangent (of an angle) Definitions 7.4; p. 168
tangent line (to a circle) Definition 5.11; p. 118
terminal point (of a directed 
line segment or vector)

Definitions 1.1; p. 10

tetrahedron Definitions 12.7; p. 301
translation (of a curve) p. 439
translation (of a point/vector) Definitions 8.1; p. 215
translation (of a region) Definitions APP1.2; p. 431
transversal p. 69
trapezoid Definitions 12.2; p. 298
triangle Definitions 2.3; p. 25
triangle (formed by two 
vectors)

Definitions 2.3; p. 25

triangle inequality HWVI.2; p. 154
trig p. 167
trigonometric p. 167
trigonometric functions Definitions 6.1; p. 148
trigonometry p. 167
trivial vector Definitions 1.4; p. 11
union (of two sets) Definitions APP0.1; p. 423
unit vector Definitions 2.4; p. 26
upper half plane Definitions 0.1; p. 6
vector Definition 1.2; p. 10
vertex (of a polygon) Definitions 2.3; p. 25
vertical angles p. 69
vertices (of a polygon) Definitions 2.3; p. 25

volume (in R3) Definitions 12.6; p. 300
volume (of a ball) Theorem 12.8; p. 302
volume (of a cone) Theorem 12.8; p. 302
volume (of a cylinder) Theorem 12.8; p. 302

volume (of a generalized cone) Theorem 12.8; p. 302

volume (of a generalized 
cylinder)

Theorem 12.8; p. 302

volume (of a subset of R3) Definitions APP1.10; p. 433
without loss of generality Definitions APP0.2; p. 425
x component (of a directed line 
segment or vector)

Definitions 1.1; p. 10

x coordinate (in R2) Definitions 0.1; p. 6

x coordinate (in R3) Definitions 12.6; p. 300

x-axis (in R2) Definitions 0.1; p. 6
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x-axis (in R3) Definitions 12.6; p. 300
xy plane Definitions 12.6; p. 300
y component (of a directed line 
segment or vector)

Definitions 1.1; p. 10

y coordinate (in R2) Definitions 0.1; p. 6

y coordinate (in R3) Definitions 12.6; p. 300

y intercept (of a line in R2) Assertion and Definition 0.5; p. 6

y-axis (in R2) Definitions 0.1; p. 6

y-axis (in R3) Definitions 12.6; p. 300

z coordinate (in R3) Definitions 12.6; p. 300

z-axis (in R3) Definitions 12.6; p. 300
zero vector Definitions 1.4; p. 11




