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VECTORS and PERPENDICULAR GEOMETRY MAGNIFICATION

-

This is one of a series of very short books on math, statistics, and physics called “Math Magnifi-
cations.” The “magnification” refers to focusing on a particular topic that is pivotal in or emblematic
of mathematics.

OUTLINE

We will define (two-dimensional) vectors and their operations both geometrically and alge-
braically. Our particular goal is to characterize perpendicular vectors algebraically. We will use this
to give quick and easy proofs of some results in geometry involving right angles. The intuition of
minimizing distance by “dropping a perpendicular” will be made explicit.

This magnification will introduce the reader to what is arguably the most successful theme in
mathematics, the synthesis of algebra (calculation) and geometry (pictures). The algebra gives us
precision and the geometry intuition. Proofs are also introduced, with the algebra making them half
computation and the geometry giving a visual direction.

We conclude with some detective work, using our results to fill in missing sides and right angles
in triangles and parallelograms.

For this magnification, students should be familiar with first-year high school algebra, the def-
inition of a polygon and its vertices, and the Pythagorean theorem. Reference [4] is more than
sufficient. For the proofs, students should also be familiar with the language of logic: “if,” “only if,”
“necessary,” “sufficient,” “converse.” The double arrow “ <=> " means “if and only if,” or necessary
and sufficient, or equivalent.

See (2] for much more on vectors in the setting of linear algebra. A much more complete

treatment of trigonometry and geometry via vectors and complex numbers will appear in a future
book ([3]).




INTRODUCTION.

By way of urgent motivation, imagine yourself on a beach with hot sand borderiﬁg a cool ocean.
If you're barefoot, you want to cool off as quickly as possible by taking the shortest path to the
ocean. Below (DRAWING 0.1) is a picture of your path to the ocean.

g { DRAWING 0.1
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If this exposition were spoken, with an audience, we would now ask the audience “What’s
wrong with this picture?” In my experience, many members of said audience would answer “Not
the shortest path.” When I respond “Why not?”, I would hear “not making a right angle with the
shoreline.” See DRAWING 0.2 for this shortest path, with right angle drawn in.

DRAWING 0.2

Other physical motivations for being perpendicular abound. Housebuilders try to make walls
perpendicular to the ground, and good posture suggests that we try to make our bodies perpendicular
to the ground, unless we'’re lying down.
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CHAPTER I: VECTORS.

We would like an algebraic characterization of right angles, in the setting of vectors (Definitions
1.1).

Definitions 1.1. A vector is represented by a directed line segment, meaning an arrow. The initial
point, denoted in DRAWING 1.2 by the letter I, is marked with a fat dot, and the terminal point
denoted in DRAVVING 1.2 by the letter T, is marked with an arrow head; the directed line segment
is then denoted IT. Two directed line segments represent the same vector if they have the same
length and direction.

DRAWING 1.2
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For two-dimensional vectors, we place ourselves in the Cartesian plane R? = {(z,y) | z, y are real}.
A point (a,b) in R? is denoted by a dot a units to the right of the origin (0,0), b units above the
origin, as in DRAWING 1.3. The number a is the x coordinate of (a,b) and b is the y coordinate
of (a,b).

DRAWING 1.3

! ) (a,b)

If I = (z1,5) and T = (z2,y2), then v; = (z2—z) is the x component of IT and v2 = (y2—uy1)

=
is the y component of IT. Two directed line segments represent the same vector if and only if said
line segments have the same components; the vector with x component v; and y component vs is
then denoted

U =< V13V9 > .




‘\g/ DRAWING 1.4
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In DRAWING 1.5, each directed line segment (arrow) represents the vector < —2,1 > .

DRAWING 1.5




Definitions 1.6. We may add vectors and multiply vectors by real numbers. If
U =< v1,v2 >, W =< wy, w2 >, and ¢ is a real number, then

(U+ W) =<vy +wi,va+we > and c¥ =< cvi,cvs > .

Here are the corresponding directed line segments. Note that (the corresponding line segment
for) cv is parallel to (the corresponding line segment for) .

el /] v ()
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Examples 1.7. Let ) =< 2, -1 >,7s =< —4,2 >, and 73 =< 1,3 > . See below for drawings of
the directed line segments for 1, vo = —24;, U3, and (¥; + 3). ;

J
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Definition 1.8. The norm of a vector 7 =< vy, vy > is

71l = /2 + 3. N

Note that, by the Pythagorean theorem, ||7]| is the length of a directed line segment representing .

Example 1.9.

T ey = = Ve +2"

|




CHAPTER II: ORTHOGONALITY and DOT PRODUCT.

~
Discussion 2.1. To characterize two vectors 7 =< vy, v >, 0 =< w1, w2 > being perpendicular,
also known as orthogonal, as in DRAWING 2.2,

DRAWING 2.2

..9
w >
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we will use the Pythagorean theorem: |4 + ||? = ||5]|? + ||w||? IF ¢ and & are perpendicular (see
the picture of the triangle formed by @, @, and (¥ + 1) in Definitions 1.6).

For arbitrary v =< vy, ve >, W =< wy, wy >,
[(T+9) 1% = || < vi+wi,vo+ws > |2 = (v; +w1)?+ (va+wa)? = (v +2v 1w, +w})+(v34+2vwa +w3)

= (v} +v3) + (w} + wd) + 2(viw; + vows) = |72 + 15]12 + 2(viwy + vows).

That last term in parentheses is our only barrier to the Pythagorean theorem, thus it deserves
a name.

Definition 2.3. The dot product or inner product of 7 =< vy, v > and ¥ =< wy, wy > is

(U-0) = (viwy + Vaws).
Example 2.4. <1,-2>-<3,4>=1-3+(-2)-4=3—-8=—5.

Properties of dot product 2.5. Suppose #,w, and i are vectors and ¢ is a real number.

irected line segments for) v and w are orthogonal, meaning perpendicular, as in DRAWING
enoted v L u, if and only if 7- @ = 0.

.

)
2.2,

Example 2.6. Let v; and v3 be as in Examples 1.7. Are they perpendicular? They look sort of
perpendicular, but perhaps I drew them poorly; I trust neither my artistic skills nor my eyesight to
answer such an important question. But the dot product gives us supernatural precision, completely
beyond the physical limitations alluded to in the previous sentence:
T1-Ta=2-14(-1)-3=—1+#0,

thus the answer is no, they are not perpendicular.
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Definition 2.7. It is time to realize the hot-sand and cool-ocean picture of the Introduction.
If @ and b are vectors, the (orthogonal) projection of @ onto b, denoted -
proj;(@),
is a real multiple of b such that
(@ — proj(a@)) L b.

DRAWING 2.8.

5? : ( \]rOB%L&\
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Here is a premse statement of the projection of @ onto b giving us the point on-the line through
the origin and b that is closest to a.

Proposition 2.9. For any real s, vectors @ and 5,

@ — projz(a@)|| < ||@ — sb]|.

DRAWING 2.10.

a

0 prOJ@(,d)

Proof: By orthogonality,

|a=sB|* = | (@ — projs(@)) + (proig(a) — s5) I = || (@~ proj5(@) IP+] (projs(@) — s5) |1 > || (@~ projs(@) 1>
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Discussion 2.11. We don’t yet actually know if projz(@) exists, for any , b. If it does, we would
like the precision and certainty of an algebraic formula for the projection, to supplement and interact
with, the intuition of the purely geometric definition given.

By Definition 2.7, proj;(@) (if it exists) equals tb, for some real t. We can figure out what ¢t must
be:

thus

o

so that proj(@) = (u%u_?) b

Proposition 2.12. For any vectors @, b, proj;(@) exists, and equals

(—"> i
IR

Proof: This is running backwards through Discussion 2.11:
(a— (“;b) 5) b=ad-b— (‘i—b) (b-b)=a-b— (‘ﬂ—b> IB|2=a-b6—a-
1611 16112 1l

Example 2.13. Get each of the following projections.

Q‘l
[l
=

(a) proj<1,2>(< 0,1 >).
(b) proj<o,1>(< 1,2 >).
(c) proj<i,—2>(< —2,4 >).
(d

) Proj<1,-2>(< 2,1 >).
Solutions. (a) <ﬂ<11>2<>1“2> £1,25=32 1,2,
(b) SpZSi= <0,1>=2<0,1>.
()<“"’<41—>_§;”;2<1,—2>— 20<1,-2>=< -2,4>.
d) = <1,-2>=<0,0>.

Note that (equating vectors with directed line segments representing vectors), in (c), < —2,4 >
is parallel to < 1, -2 >, while, in (d), < 2,1 > is perpendicular to < 1,—2 > .

\ .
() U | \&

\
\\ \
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Notice that projection allows us to make the following decompositions.

- N
Decomposition 2.14. If @ and b are nontrivial (that is, not equal to < 0,0 >) vectors, then there
exist vectors @) and @y such that a; is parallel to b, @, is perpendicular to b, and

—

a = ay + do.
DRAWING 2.15.

a R

/7R3

)

—

Proof: Let d; = proj;(@), d2 = (@ — a).

Example 2.16. Write < 1, —2 > as a sum @, +d», with @, parallel to < 3,2 > and a» perpendicular
to <3,2>.

Solution: proj<zas(<1,—-2>) = (%%;%2) < 3,25= (]—g) < 3,2 >, so define

=3 =2 —3 -2 ) 16 —24
oy -

h=<71373 '1B3°) 1313

>y 0.2._<<1,—2>—<

Discussion 2.17. This decomposition is of particular interest when @ is a force or wind and b is
dlsplacement all we care about then is @;, from Decomposition 2.14. For example, if @ is the wind
and b is the direction of a path on which you are bicycling, @ neither speeds you up nor slows you
down; it only tries to bowl you over.

For example the absolute value of the work done in makmg that displacement b under the force
@ is then ||@, ||||b]|, which the reader should show is |a@-b].

When @ is a force acting on a door 3, hinged at the initial point of b, then only ds is relevant to
the rotation of that door.
o

Vg

1
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CHAPTER III: SOME ORTHOGONAL (PERPENDICULAR) GEOMETRY.

Besides the existence of orthogonal projections guaranteed by Proposition 2.12? all we need for
this chapter is the dot product of Chapter II (Definition 2.3), or anything called a dot product, with
the properties of 2.5.

Discussion 3.1. A triangle is a three-sided polygon and a quadrilateral is a four-sided polygon.
A triangle is determined by three vectors @, b, ¢, with

G+b+¢=0=<0,0>.

DRAWING 3.2.

=
C

S

See also the Definitions 1.6 picture.
We may similarly characterize a quadrilateral ([1, Vector definitions and Drawing 6]), but wish

to focus on a parallelogram, which is a quadrilateral with nonconsecutive sides parallel. We showed
in [1, Geometry Theorem 9] that nonconsecutive sides of a parallelogram are automatically of equal

length, thus any parallelogram may be described with two vectors @, b as follows.

DRAWING 3.3.

-

4

St

a

Geometry Theorem 3.4. The diagonals of a parallelogram are perpendicular <= all sides of
the parallelogram have equal length (such a parallelogram is called a rhombus).

Proof: Let the parallelogram be as in DRAWING 3.3. The diagonals are (& + E) and (@ — I_;) (see
DRAWING 3.5 “below”); they are perpendicular if and only if
0=(@+b)-(@—b) = 0=G-@—a-b+b-a—b-b «> 0= a2 — |52,

which is equivalent to ||@|| = [|]|.
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DRAWING 3.5

: e
d N (a-)

As an analogue of 3.4, we have the following.

Sy
&5~y

Geometry Theorem 3.6. The diagonals of a parallelogram have equal length <= all interior
angles of the parallelogram are right angles (such a parallelogram is called a rectangle).

Proof is left for homework. We recommend starting, analogous to the proof of 3.4, with ||a+b/|2 =
la—8l|* <

Geometry Theorem 3.7. (parallelogram law) In a parallelogram, the sum of the squares of the
lengths of the diagonals equals the sum of the squares of the lengths of the sides.

Proof is left for homework. NOTE that, in DRAWINGS 3.3 and 3.5, “the sum of the squares of
the lengths of the diagonals” is ||@ + b]|2 + ||@ — b]|.

Geometry Theorem 3.8. Suppose a trlangle has vertlces A,B,and C (see drawmg below). Then
||BC’|| = ||BA|| <= the projection of CB onto CA is the midpoint of CA.

Proof: Pythagorean theorem (Proposition 2.12 was needed to ensure that the projection proj=— 7 (CB)
existed).

The triangle we have just characterized is called an isosceles triangle.

? i :
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Discussion 3.9. An equilateral triangle is a triangle with all sides of equal length.

We reproduce here (see DRAWING 3.10) the following from the proof of [1, Geometry Theorem
12}

In any triangle, the lines from vertices to midpoints of opposite sides all intersect at the same
point, two thirds of the way from vertex to opposite side.

DRAWING 3.10.

Combining Geometry Theorem 3.8 above with DRAWING 3.10 gives an extraordinary amount
of symmetry for equilateral triangles, as drawn in DRAWING 3.11.

DRAWING 3.11.
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Examples 3.12. In each of the following, fill in lengths of sides and right angles, where possible.

Assume all quadrilaterals are parallelograms.
Use the results of this chapter, including DRAWINGS 3.3, 3.5, and 3.10, combined with the
following ([1, Geometry Theorem 18]): diagonals of a parallelogram bisect each other.

[>T
) E

(+)

()

¢
() é {d)
(o
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HOMEWORK

~,

1. Use vector methods, including DRAWINGS 3.3 and 3.5, to prove Geometry Theorem 3.6.
2. Use vector methods, including DRAWINGS 3.3 and 3.5, to prove Geometry Theorem 3.7.

3. Prove that ||@ + tb]| > ||@]|, for all real ¢ if and only if @ L b.

oL

HINTS: Use 2.5(e) to show that @ L b is necessary for @+ tb]| > ||@], by plugging in ¢ = (— [%'”

)

(%)

into ||@ + tb||2. For @ L b, use the Pythagorean theorem to show the inequality.

4. Let @ and b be arbitrary nontrivial (not equal to < 0,0 >) vectors.

(a) Use 2.5(e) or the Pythagorean theorem to show that
la* = l|projz(@)|* + [|@ — proj;(@)|>.
(b) Use (a) to show that
@]l = [[projz(a)|l-

(c) Use (b) and Proposition 2.12 to prove the Cauchy inequality:
j@- | < lla]| 18]l
(d) Use (c) and 2.5(e) to prove the triangle inequality:

ll@ +bll < llal| + ||b]]-

See the drawing of vector sums in Definitions 1.6 for the geometry of the triangle inequality.
5. Get each of the following projections.
(a) proj<2,-3>(< 1,0 >).
(b) proj<1,0>(< 2, -3 >).
(c) proj<s2>(< 2,-3 >).

(d) proj<e,—9>(< 2,-3 >).

6. Suppose, for some arbitrary number m, < 1,m’ > is perpendicular to < 1,m > . Find m/.

This can be used to get the slope of a line perpendicular to a specified line.

1 m)
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7. Write < 1, -8 > as a sum @, + d», where @ is parallel to < 2, —1 > and @, is perpendicular to
<2,—-1>.

~

8. In each of the following, fill in lengths of sides and right angles, where possible, as instructed in
Examples 3.12. Assume all quadrilaterals are parallelograms.

a ; (h)

() (0” 5
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HOMEWORK ANSWERS
1. Let @ and b be as in DRAWING 3.3 and 3.5. Then the diagonals of the parallelogram have equal
length if and only if
|a+5]> = la—b]* <= (2.5(e))|@|*+[5]*+2a-5 = [|al|>+ || —b||>+2a-(~b) < (2.5(b)and(d))

a-b=0,
which is equivalent to the parallelogram being a rectangle.

2. Let @ and b be as in DRAWING 3.3 and 3.5. The sum of the squares of the lengths of the
diagonals equals

la+8]+(la~B[1* = (2.5(e)) (|l + B2 +2a - 5) + (Jal1* + || - B> + 23 (-F)) = (2.5(b)and(d))

2(1@|1* + 2/6],
the sum of the squares of the lengths of the sides.

3. If @ L b, then for any real ¢, by the Pythagorean theorem,
@+ tbl|* = (1@ + |1b]|> > |||

Conversely, if @ is not perpendicular to b, then @- b # 0, thus, by 2.5(e) and (b), with ¢ = (——‘i’i) "

-\ 2 -
o _. o T _. - L . a-b - a-b\ _ -
la-+tb]|* = [|@|*+|¢b*+2a- (tb) = [la@*+¢||6]|>+2¢(@-B) = [la@l*+| ——=— ) [BI*+2 | ——=— | @B
1612 611>

For those who have seen calculus, t = (—%) is the value of ¢ where the derivative of
F(t) = || + £*||B)1* +2¢(@ - )

equals zero and the second derivative is positive, thus

(6]

is a minimum value for F(¢). For those who have seen the technique of completing the square,

oy 2 oy 2
= 7 o = - a-b a-b
F(t) = [|a@|* + ¢|16l|* + 2¢(a- b) = ||| + [|5])2 l:(t + W) = (W) ] ,

- -\ 2
F (-‘ﬂ—b) = |la||? - (-“Tb) .
]2 lloll

4. (a) By the Pythagorean theorem and the geometric definition of proj;(d),
12

with a minimum of

I

la* = [[projz(@) + (@ — projg(@)) I|* = ||projg(@)||* + || (@ — proj;(a))

(b)

lla* = [[projz(@)[1* + || (@ — projz(@)) ||* > [|projz(@)||*.
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(c) By (b), 2.5(b) and (d), and Proposition 2.12,

I R 2
a2 > llprojz@)| = || | &2 ) g2 = (28] | .
TE 17

thus

—

i3]l > |a- 5].

Qy

(d) By (c) and 2.5(e),
@+ B)|2 = [|a@]|1% + [1B]|> + 2@ - & < (|@||% + |1B]| + 2/|@]l|1B]l = (la]| + |B]))2.

— 2 __ 4 6
<2’_3>—T§<2’_3>—< —i3 > -

13»

1,0>-<2,—3
5. (a) T]—l]"_< <;f3> i

(b) S <1,0>=2<1,0>=<2,0>.

(c) H5557= <3,2>=<0,0>.

(d) 250> <6,-9>=<2,-3>.

6. 0=<1,m>-<1,m' >=1+m-m; solving for m’ gives

ml = —l.
m

7.6 = (%I‘jf_—fiﬁ‘,ﬁ) <2,-1>=<4,-2>, Gy =<1,-8>-<4,-2>=< -3,-6>.
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