TSITSITSITSITSITSITSITSITSITSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI

Vectors and Physics
MATHematics MAGnification™

Dr. Ralph deLaubenfels

TSITSITSITSITSITSITSITSITSITSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI TSI

Teacher-Scholar Institute
Columbus, Ohio

2018

© 2018, Teacher-Scholar Institute, www.teacherscholarinstitute.com




VECTORS and PHYSICS MAGNIFICATION

~

This is one of a series of very short books on math, statistics, and physics called “Math Magnifi-
cations.” The “magnification” refers to focusing on a particular topic that is pivotal in or emblematic
of mathematics.

OUTLINE

A vector has both magnitude and direction and is represented by an arrow. Some examples in

physics of vectors are velocity and force. Speed and energy, having magnitude but not direction, are
not vectors.

After defining (informally) and drawing vectors and their operations, we will use vectors to
discuss swimming in the ocean with a current, bicycle stability, and friction.

This magnification will illustrate a common and useful theme in mathematics, the intertwining
of algebra and geometry.

For this magnification, students should be familiar with arithmetic, the Cartesian plane and
equations of lines in said plane, and should know about angles formed by two line segments meeting
at a point, as in the interior angles in a triangle (see drawing below). Any additional geometry
needed will be summarized in Chapter II.

Prerequisites for this magnification are first-year high school algebra, such as may be found in
[6]. Students should have access to a calculator that can calculate square roots.




I. VECTORS

~

Suppose I'm traveling on the north-south freeway Interstate 3.14, and I tell you that my speed
is 60 miles per hour. There is important missing information; namely, am I going north or south?

This illustrates that, even in one dimension, in addition to magnitude (60 miles per hour), there
is also direction (north or south).

In the famous (real) number line, moving to the right corresponds to increasing numbers, to the
left decreasing numbers.
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For example, 5 is different than (—5), although their magnitudes
5| =5=]-5]|

are equal.
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We can emphasize this difference by drawing arrows, first from 0 to (—5), then from 0 to 5;
these arrows illustrate the different directions of 5 and (—5), and may be considered one-dimensional
vectors.

-5 (%) =

In one dimension we have only two directions, north versus south, to the right versus to the
left, etc. In two dimensions, meaning a plane, we have infinitely many directions: north, south,
northeast, north by northwest (famous movie), all the points of the compass.
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We wish to dwell in two dimensions for the rest of this magnification. We assume familiarity
with the Cartesian plane, hereafter denoted the plane, where, for any real a, b, the ordered pair (a,b)
represents the point @ units to the right of the origin and b units above the origin. a is called the x
coordinate of (a,b), b is called the y coordinate of (a, b).
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Definition 1.1. A (two-dimensional) vector is (more precisely, is represented by) a directed line
segment in the plane, with the direction indicated by a fat dot as the starting point, an arrowhead
as the finishing point. Two directed line segments represent the same vector if they have the same
length and direction.

In the drawing below, each arrow represents the same vector.

DRAWING 1.2

See [3] or [4] for much more about vectors, including more precise definitions. References (1]
and [2] have informal introductions to vectors.

We need to make “length” and “direction” more explicit. Here is a close-up of a vector:
g P




DRAWING 1.3
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Definitions 1.4. [ is the initial point of the vector drawn directly above in DRAWING 1.3, T is
the terminal point of the vector, and the vector is denoted T.HI= (z1,31) and T = (z2, y2),
then the components of IT are < (z2 — 1), (Y2 — y1) >; v1 = (2 — z1) is the x component of
IT and v2 = (Y2 — ¥1) is the y component of i i

Thus the vector drawn (repeatedly) in DRAWING 1.2 is < —1,2 > . Referring to specific arrows
in DRAWING 1.2, < —1,2 >=< (-1-0),(2-0) >=< (0—1),(2-0) >=< (1-2), (-1 —(=3)) >,
etc.

Neither the initial point nor the terminal point, in isolation, describes a vector; a vector is
the- displacement, that is, change, in traveling from the initial point to the terminal point. The x
component is the displacement in the x coordinate and the y component is the displacement in the
y coordinate.

More generally, here is an algebraic characterization of two directed line segments representing
the same vector.

Proposition 1.5. Two directed line segments represent the same vector if and only if their com-
ponents are the same.

Terminology 1.6. If a vector 7 has x component v; and y component vo, we denote

U =< v,v2 >.
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It is very convenient to be able to move vectors around, as in DRAWING 1.2. For example, if
you're in space, close enough to earth to be affected by the pull of earth’s gravity, it is natural to

place the initial point of that force on your body, because that is where you feel the force pulling
you to earth.

Definitions 1.7. The norm or magnitude of a vector 7 =< vy, v > is

191 = y/v1 + 3.

<J

Vi,

Notice that the norm of ¥ is the length of an arrow (directed line segment) representing .

A vector of norm one is called a unit vector. By standardizing the length to be one, we may
focus on the direction of a vector.

Examples 1.8. (a) If 7 =< 3,4 >, then ||7]| = v/32 + 42 = 5.

We will leave it to the reader to calculate that the norm of < %, ‘51 > is one. Thus < :—g—, % > isa
unit vector pointing in the same direction as 7. See Definitions 1.11.

(b) Velocity is a vector, while speed is the norm of velocity.
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Definitions 1.9: Vector Algebra. We may add vectors:
<wy,v2 > + < wy,we >=<L (v1 + wr), (v2 + wa) >,
and multiply vectors by real numbers:

a < v,v >=< avy, avy > .

Examples 1.10. <1,2> + <3,-4>=<4,-2>;(-2)<3,-1>=< —6,2>.

Definitions 1.11: Geometry of Vector Algebra. Here are the pictures of the directed line
segments representing vector algebra.
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The picture of multiplying a number times a vector suggests the following definitions.

Two vectors 7, W are parallel if one is a real multiple of the other: ¥ = o or @ = a7.
If a > 0, we say that ¢ and @ point in the same direction. If a < 0, we say that ¢ and &
point in opposite directions.
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Examples 1.12. Drawn below is the geometry of the operations in Examples 1.10, with

id=<1,2>, b=<3,-4>, and ¢=<3,-1>.
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II. GEOMETRY ASSUMPTIONS

~

Geometry Assumption 2.1. The interior angles in a triangle add up to 180 degrees.

“91 + @z+ 9’5) -
G 5,

O (B0 clegrees

Geometry Assumption 2.2. In the two right triangles (meaning they each have a right angle,
that is, an angle of 90 degrees) below,

b1 b2 b2

(a) 61 =6, if and only if — = —= and (b) 6; > 6, ifa.ndonlyifb—l > = .
ai ai as

a2

(al' \9,»

Remarks 2.3. Notice that %IL is the slope of the line through (0,0) and (a1, ;). In trigonometry,
% is the tangent of the angle 6, in the right triangle above.




ITI. VELOCITY and ANGULAR MOMENTUM

~

Examples 3.1: Swimming. (a) I swim NorthEast at 5 mph (miles per hour); that is, if there
were no current, that would be my speed and direction. What I don’t know is that there is an ocean
current East at 3 mph; that is, if I stopped swimming, I would float East at 3 mph.

After two hours, where will I be and how far will I have traveled?
(b) Another swimmer plans ahead: he will swim NorthWest, and needs to know at what speed he

should swim, so that he will be traveling directly north.

Solutions. (a) We need two vectors, one for my swimming, the other for the ocean current. “East”
means a multiple of < 1,0 > . Since the speed (defined to be the norm of the velocity) is 3, the
velocity vector for the current is

3<1,0>=<3,0> mph.

For my NorthEast swimming, I need a vector pointing as drawn below.

d o

|

— X

By Geometry Assumptions 2.1 and 2.2, the two sides in the right triangle drawn below are of
equal length.

0
45 | «
0
Us

X

Use the Pythagorean theorem to get that length:

52=2’4+z2=222 >z =

e

Thus my swimming vector is

A I
—, —= > mph.
V2 V2 4
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We could also have gotten that swimming vector in the following way. Start with < 1,1 > as a
vector pointing NorthEast, then divide by its norm, to get

1 ~
<lLl>=<—
V2 f \f
as a unit vector pointing NorthEast; to give it a speed of 5, still pointing NorthEast, multiply the

unit vector by 5:
1 5

1 5
— = >=< —=,—= >
V2' V2 V2 V2
For the combined effect of swimming and current, add those two vectors to get my velocity
relative to where I started:

5<

>+ <3, 0>] R N T LN 6.54,3.54 > mph.

[\/_\/' V2 V2

After two hours, my location is

\/_ \/_> < (5V2+6),5v2 >~ < 13.07,7.07 >

miles relative to where I started, a distance of

| < (5v/2+6),5v2 > || = \/(5\/5 +6)2 +(5v2)2 = \/(50 +60v2 + 36) + 50 = \/136 +60v2 ~ 14.86

miles from where I started.

Alternatively, we could have first gotten the speed (from both swimming and current) at which
I move away from where I started:

v \/— V2 V2 \/_

then multiplied by 2 hours:
30
24/34 + — ~ 14.86 miles.
V V2

Notice that the net speed, of my swimming added to the current: ~ 7.43 mph, is less than the
sum of the speeds of swimming and current: 5+ 3 = 8 mph. Equality would occur only if I swam
in the direction of the current. This is an example of the triangle inequality:

@+ ol < (||l + |5l

with equality only when @ and b point in the same direction. The triangle inequality is stating that
the shortest path between two points is the line segment from one point to the other.

5 5 5
[ < > = \/(—+3)2+(—) 344 32 ~ 7.43 mph,

b
(2+5)

*
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(b) Since we don’t yet know the speed, for our swimming contribution we should begin with a unit

vector pointing NorthWest:
~

us? ( o
iRy e,

As with the solution of (a), this unit vector will be

g [ENRN |
€ ===y >
V2 V2
denoting s for our speed, this means our swimming vector will be

s < L L >=< S s >
When we add the swimming vector to the current vector < 3,0 >, we get a vector pointing north:

S S S
—>=<3,0>+< ——,—

V2' V2 V2 V2

<3- >=<0,--->,

so that

3—— =0,

Sl

thus s = 3v/2 ~ 4.24 mph.
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Examples 3.2. The momentum of an object is its mass times its velocity; this is a number times
a vector, thus momentum is a vector. Angular momentum, and its relationship to angular velocity,
we do not wish to go into very thoroughly; a more complete treatment of linear algebra, as in [3],
than this magnification is needed. See [5] for physics that uses linear algebra and calculus.

We will focus in this example on a bicycle in motion. We will assume the following two facts
about the angular momentum, denoted L, of each bicycle wheel:

1. L is a vector perpendicular to the plane of the wheel; and

2. as the speed of the bicycle increases, ||L||, the magnitude of the angular momentum, increases.

8 o

(s’ LOW [

We will now show that these two facts are enough to explain why a bicycle is more stable at
higher speeds, something that the author always found hard to believe.

Denote by A6 the deviation from 90 degrees that the bicycle’s angle with the ground is making
(“A” is the Greek letter Delta, for “difference” or “change”), by AL the change in L resulting
from this deviation, as drawn below, with L drawn in red. A8 we may take as a quantification of
instability: the larger Af, the less stable the bicycle. Notice that the same A# creates a bigger
|ALJ|, at higher speeds.

NO ~ -
B
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pls ALp
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The vector AL is called torque, in this case possibly the result of fear-induced thrashing.

Looked at another way, the same fear-created AL will produce a smaller instability A when
the bicycle is going faster. ~

NOs | Moy
(

L Ab s

[ stow (FAST

The analysis above also explains why tightrope walkers carry poles; the longer the pole, the
more stable the tightrope walker.

The same vector physics occurs with rifling, making the path of a bullet more stable by giving
it angular momentum.
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IV. FRICTION and MOTION on an INCLINED PLANE

~

Many vector force problems similar to the vector velocity problems of Examples 3.1 abound;
see, for example, [5] and [7]. We will focus on a particular case of force vectors, those that cause
motion on an inclined plane, and apply them to calculating friction.

Anyone familiar with cats knows that the force required to slide a cat along a surface depends,
not only on the weight of said cat, but the friction (including instinctive resistance by the cat) the
cat makes with the surface. For example, a glass surface would require less force than a rug; this is
what it means to say that the friction between the cat and the glass is less than the friction between
the cat and the rug. The coefficient of static friction (Definition 4.3), denoted p, (p is written as
“mu” and pronounced “mew”), assigns a number, to a stationary object on a surface, that measures
its friction. A cat on glass has a lower coefficient of static friction than a cat on a rug.

In this chapter, we will use vectors to calculate the coefficient of static friction of an object on
a plane (a flat surface) by tilting the plane counterclockwise from the ground until the object starts
to slide.

Throughout this chapter, pictures such as the one below will be a side view of a plane, such as a
bread board, tilted up from the ground. Both the plane and the ground are coming out of the page
of this magnification. The angle  is the angle of inclination, of the plane from the ground. The
vector g is gravity, perpendicular to the ground. We denote by ¢ the side view of the plane; that is,
£ is the intersection of the plane with the surface of this page.

LoV

1

gr—@ Uv\ﬁ(

To quantify friction we need the idea of a normal force (Definition 4.1 and DRAWING 4.2).

Definition 4.1. Suppose an object is on a surface. Unless the surface is vertical or said ob ject has
no mass, gravity would make said object crash through the surface, unless there were another force
cancelling out gravity’s pull. This force, perpendicular to the surface, is called the normal force
on said object.




15

On a horizontal surface, the normal force F, on an object is said object’s weight (mass times

gravity), in the opposite direction.
~

W(’jﬁ‘f\"}?

When the surface is tilted, to make what is called an inclined pla.ne, normal force becomes more
interesting. Let F be the force on the ob ject created by gravity. Write F' as the sum of two vectors,
one, call it Fm, parallel to the mchned plane, and the other call it FQ, perpendicular to the inclined
plane. Then the normal force F, = —F2 The “m” in F stands for motion, since Fm is the force
trying to move the object down the slope.

DRAWING 4.2 Q

f ,

5K o

6ro\ma( L S‘rov*\‘(

In DRAWING 4.2, note that, when the plane (side view £) is parallel to the ground, F» then
equals F, and our definition of normal force is the same as when previously defined on a horizontal
surface.
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Definition 4.3. The coefficient of static friction for an object at rest on a surface is

_ (magnitude of the maximum force perpendicular to the normal force that does not start the object moving)
a (magnitude of the normal force) ’

That is, if Fy, is the magnitude of the force perpendicular to the normal force and F, is the
magnitude of the normal force, then

the object does not move if F, < u F,

and
the object starts to move if F,, > pgF,.

Examples 4.4. (i) Suppose a 10 pound cat is on a horizontal surface, with ps = % Then a force
of magnitude greater than 5 pounds is required to start moving the cat.
(ii) If s = 3 in (i), then a force of magnitude greater than 30 pounds is needed.

In general, p, large corresponds to a rough, scratchy surface and/or object, while u, small
corresponds to a slippery situation, like traveling on ice.

In DRAWING 4.2 we would like to add the angle of inclination, denoted 6, between the inclined
plane and the ground. We will denote Fy, = ||F;p|| and F,, = || F,||. The additional appearance of 6
in DRAWING 4.5, drawn in red, follows from Geometry Assumption 2.1.

DRAWING 4.5

ﬂrow\d

Proposition 4.6. In DRAWINGS 4.2 and 4.5, denote F, = ||F,,|| and F,, = || F,|| and let us be
the coefficient of static friction for an object on the inclined plane with side view .

(a) The object starts sliding down the inclined plane if and only if %"11 Sl
(b) ps equals the largest possible value of EF"T that does not make the object move.

(c) If we start with £ horizontal, then rotate it counterclockwise, y, equals the value of % above
which the object starts moving.
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Proof: (a) is merely a restatement of the definition of .

As / in DRAWING 4.5 is rotated counterclockwise, equivalent to the angle «of inclination 6
increasing, —m increases, by Geometry Assumption 2.2(b). Thus (a) implies there is a particular
value of 6, call it 6o, such that, for # < 6y, the object does not move, while for 8 > 6, the object
starts to move; see DRAWING 4.7(a) below.

In DRAWING 4.5, each value of 6 corresponds to a unique value of ; under that correspon-
dence, 6 corresponds to us, giving us (a)-(c). See DRAWING 4.7(a) and (b) below.

DRAWING 4.7

BOARD ROTATES COUNTERCLOCKWISE; ANGLE OF INCLINATION § INCREASES
as we move from left to right in pictures below

' objecf I ob\')ecﬂr gjrmwjr/
(&\ dloes net —l»o mo ve

MoV

—

‘ 6\3')ec+ , OJQC+ 6+&\r\\7
[ goes nob To move
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The vector magnitudes F;,, and F), in Proposition 4.6 are not easy to measure. We need an
analogue of Proposition 4.6 that involves only the line £ in DRAWINGS 4.2 and 4.5.

~

Proposition 4.8. In DRAWINGS 4.2 and 4.5, the slope of ¢ equals llllflzmllll =

Proof: Apply Geometry Assumptions 2.2(a) and see Remarks 2.3 to DRAWING 4.5.

Proposition 4.8 allows us to restate Proposition 4.6 entirely in terms of the slope of £ in DRAW-
INGS 4.2 and 4.5.

Inclined Plane Friction Theorem 4.9. In DRAWINGS 4.2 and 4.5, let p, be the coefficient of
static friction for an object on the inclined plane with side view Z.
(a) The object starts sliding down the inclined plane if and only if

[slope of £] > us.
(b) us equals the largest possible slope of £ that does not make the object move.
(c) If we start with £ horizontal, then rotate it counterclockwise, ys equals the slope of £ above which
the object starts moving.
Examples 4.10. In each part, y; is the coefficient of static friction for the object and plane of that
part.
(a) If ps = 3, how large must the slope of the plane be for the object on the plane to start moving?

(b) If we start tilting a plane counterclockwise from horizontal, and the object on the plane starts
sliding when the slope of the plane is greater than ten, what is yus?

(c) The object on the plane starts moving when the plane is as drawn below. What is 1,7

/"\

ﬂy—ea"‘%)’
4—1~6~n 10 ?L
I v

5 ¥t

(d) Suppose ps = 5. Let H be the height of the plane above the ground in the drawing below. If
the object starts to move, what can be said about H?

-

6 +t.
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(e) Suppose ps = 2. In which of the following drawings of the object and plane, in red, below, will
the object start to move?
~

(\,\ i" 12 (lt\ ’l 6

§f +

(f) Suppose the object in the picture below starts to move. What can be said about jus?

/11
7 ['! 34/-04/*\0!4

(g) Suppose the object in the picture below does not start to move. What can be said about i ¥

G sl arovnd

Solutions. (a) greater than 3.  (b) ten . (c) &ft: =4. (d) ﬁtf >5— H > 30 ft.

5
(e) (i) only, since 22 > 2 and § <2. (f) p, < =4 (@u>2=2

ols
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Remarks 4.11. (a) The coefficient of kinetic friction for an object moving on a surface is
_ (magnitude of the minimum force perpendicular to the normal force that keeps the object moving)
- (magnitude of the normal force) i

An interesting physics factoid is that, usually, px < ps. Thus, once a force starts the object
moving, it may be kept moving with a diminished force.

(b) In DRAWINGS 4.2 and 4.5, the angle of inclination # may be obtained from the line £, with the
trigonometric function tangent, nicknamed tan:
tan(@) = [slope of /].

For example, in Examples 4.10(f), the angle of inclination may be obtained as follows, on a calculator:
get tan~1(4) (reads “inverse tangent of 4”), about 76 degrees.

(c) The definition of coefficient of static friction is sometimes subtly modified from Definition 4.3 as
follows.

(magnitude of the force perpendicular to the normal force required to start the object moving)
(magnitude of the normal force) :

Hs

Equivalently,
_ (magnitude of the minimum force perpendicular to the normal force that starts the object moving)
i (magnitude of the normal force) :

8

That is, if Fy, is the magnitude of the force perpendicular to the normal force and F,, is the
magnitude of the normal force as in Definition 4.3, then

the object does not move if Fy, < usF,

and
the object starts to move if Fy, > psF,.

The only difference between this definition and Definition 4.3 is when F,,, = s F},; then Definition
4.3 says there is no motion whereas this modified definition says there will be motion.

For example, in Example 4.4(i), if a force of 5 pounds is applied to the cat, Definition 4.3 says
the cat will not move, but our modified definition says the cat will start to move.

In practice, there is no difference between Definition 4.3 and this modified definition, because
force is continuous, thus, for any number ¢, it is not possible for force to be exactly ¢ pounds; it
is only the falsification of rounding that creates that illusion. The only possible assertions about
continuous parameters is that they are between two numbers. For example, if I say I am 67 inches
tall, I really mean that my height in inches is greater than or equal to 66.5 and is less than 67.5.

Getting back to the definition of the coefficient of static friction p,, it is not possible for F,, to
equal exactly psFy,, thus the difference between Definition 4.3 and our modified definition will not
occur. For example, in Example 4.4(i), it is not possible to apply a force of exactly 5 pounds to the
cat, thus our rival definitions of us cannot be different.

Notice the similarity between this alternative definition of us and the definition of .
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HOMEWORK

1. Suppose @ =< 1,2 >,EE< —2,1>.
a. Find ||@], ||5]|, and ||@ + b]|.
b. Draw a triangle whose sides are @, b, (@ + b).

c. Describe any interesting relationships in (a) or what appear to be interesting angles in (b).

2. Suppose @ =< 1,2 >,EE< 2,4>.
a. Find ||@], ||5], and ||@ + b]|.
b. Draw @,b, (@ + b), all with initial point (0, 0).

c. Describe any interesting relationships in (a) or what appear to be interesting angles in (b).

3. Suppose @ =< 1,2 >,b =< -1,-2>.
a. Find ||d|, ||5]|, and ||@ + b]|.
b. Draw @,b, (@+ b), all with initial point (0,0).

c. Describe any interesting relationships in (a) or what appear to be interesting angles in (b).

4. Suppose @ =< 1,2 >,EE< 2,0>.
a. Find ||@|, ||5]|, and [|@ + b]|.

b. Draw a triangle whose sides are @, b, (@ + b)

c. Draw @,b, (@ + b), all with initial point (0, 0).
5. Give an example of two unit (magnitude one) vectors whose sum has magnitude zero.
6. Give an example of two unit vectors whose sum has magnitude /2.

7. Suppose I swim in the ocean to the SouthEast (MEANING that, if there is no current, I'd be
traveling to the SouthEast) while the ocean current is seven miles per hour to the North (MEANING
that, if I were not swimming, I would float North at seven miles per hour).

(a) If I swim at ten miles per hour, how far north of where I started will I be after a day, and how
far will I have traveled?

(b) At what speed should I swim so that I don’t go north or south?
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8. In each part, u; is the coefficient of static friction for the object and plane of that part.

(a) If we start tilting a plane counterclockwise from horizontal, and the object on the plane starts
sliding when the slope of the plane is greater than %, what is pus?

(b) The object on the plane starts moving when the plane is as drawn below. What is ps?

/‘\
[ 9 rea+€r

l «H«W\ G meTer)
rl v 3r0v"”{

4

U4 metery
(c) If us = 7, how large must the slope of the plane be for the object on the plane to start moving?

(d) Suppose ps = 2. Let H be the height of the plane above the ground in the picture below. If the
object on the plane starts moving, what can be said about H?

| H

3 [ round
Z miley 9

(e) Suppose the object in the picture below starts to move. What can be said about ys?

fy"ouvw‘
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(f) Suppose the object in the picture below does not start to move. What can be said about ws?

~N

|
(e

: = F( 5rouh&(

(g) Suppose ps = 3. In which of the following drawings of the object and plane, in red, below, will
the object start to move?

| O
" /S

3 3

9. EXPERIMENT. Given a plane and an object sitting on said plane, as in Chapter IV, two or
more people can do the following to get s, the coefficient of static friction, for the object on the
plane.

Start with the plane on the ground, then have Person One slowly tilt it up. Stop when the
object on the plane starts to move. While Person One holds the plane in that position that initiates
motion, have Person Two measure the slope (“rise over run” in drawing on next page) of the plane
relative to the ground. That slope is p;.

Some possible planes: breadboard, window screen, book cover, piece of lumber, etc.

Some possible objects (to be placed on any of the possible planes): stuffed animal, dice, monopoly
game figures, checkers piece, pencil, silverware, etc.

Competitions are possible: students guess, prior to experiment, what the coefficient of static
friction is, or which pairs of object-on-plane will have a higher coefficient of static friction.
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DRAWING OF EXPERIMENT (plane drawn in red, object is drawn as square)

~

(1) R
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HOMEWORK SOLUTIONS

>

1. a. [|ld@]| =v5 = [B],|@+b] = || < -1,3> | = V0.
b. 2

L el T

[ 1

c. [|@+ b2 = ||@||? + ||b]|; @ looks perpendicular to b. See [2], [3], or 4].
The other angles look equal; this follows from Geometry Assumption 2.2 and the fact that
[|@|| = [|b]|. Geometry Assumption 2.1 then implies those angles each measure 45 degrees.

2. a. ||d@|| = /5, ||| = 2v5, ||@ + b]| = 3v/5. (,01 4 10 )
b. :

+

+ 7
1 78
ﬁ?, 1 -
c. [|@+ 8| = ||@|| + ||8]l; @5, and (@ + b) point in the same direction. See Definitions 1.11.

3. a. [|all = V5 = |18}, la+ 8] = | <0,0> || =0.

-+

L (Gf*—@)io

c. [|@+b|| = 0 seems “interesting.” This cancellation of magnitude is possible because @ and b point
in opposite directions (see Definitions 1.11). Pointing in opposite directions does not necessarily
mean the norm of the sum is zero; consider ||@ + %gll = ||3@|| = }||@||. Some of the norm of @ got
cancelled.

4. a. |l = V5, bl =2, @ +8] = | <3,2> || = VI3.




5. 8=<1,05,b=<-1,0>.

6. 3=<1,0>,b=<0,1>.
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7. A vector pointing SE (SouthEast) is < 1,—1 >; to make it a unit vector, divide it by its norm:

1 .
7 <1,—1>. The current is < 0,7 > .

e

| L t,»l7

a. Our swimming vector is % < 1,—1>. Add on the current

10
[— <l,-1>+4+<0,7 >] miles per hour

V2

as our net velocity in the ocean.
For our displacement in a day, multiply by 24 (since there are 24 hours in a day):

10
24 [— <l,-1>+4+< O,7>] miles;

V2

the displacement north is

1
24 [—0(—1) + 7] ~ —1.71 miles north,

V2
or approximately 1.71 miles south.
The distance traveled is

10 10 —10
24[—=<1,-1>+<0,7>|| =244 /(—=)%>+ (—= + 7)2 ~ 170 miles.
lo4 |22 n \/(ﬁ) (g + 1P~ 110m




b. Let s be the desired speed. Then our net velocity in the ocean is

[i <1l,-1>+4+<0,7 >] miles per hour;

V2

to avoid going north or south, we need the y component

0001

to equal zero; solving for s gives us s = 7v/2 ~ 9.90 miles per hour.

1
8. a 1 b

a.
#3213—2:4

o

= 1.5 c. greater than 7 d. greater than 10 miles

g. (ii) only, since 15—0 <ip € %

e ps <
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