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BEES and HEXAGONS MAGNIFICATION

This is one of a series of very short books on math, statistics, and physics called “Math Magnifi-

cations.” The “magnification” refers to focusing on a particular topic that is pivotal in or emblematic
of mathematics.

OUTLINE

Cross sections of a honeycomb are regular (see Definition 1.4) hexagons, placed so that there
are no gaps or overlaps. This is an example of a tiling or tessellation. In this Magnification, we will
discover all possible tilings with copies of a fixed regular polygon and derive that this tiling with
hexagons is ideal, in a certain surprising sense, among all such tilings.

Prerequisites for this Magnification are some high school geometry and first-year algebra includ-
ing the Pythagorean theorem and the definitions of convex polygon, vertices of polygons, perimeter,
and angle. Reference [3] is more than sufficient for both the geometry and algebra needed.




1. INTRODUCTION.

To paraphrase Leibniz (see also Dr. Pangloss, in [4]), hexagons make the best of all possible
honeycombs. It is a fact that honeycombs (to be precise, cross sections of a honeycomb) are made of
hexagons. For this Magnification, we will assume we don’t know this fact and are too squeamish, or
nonviolent, or afraid of being stung by bees, to physically discover it by slicing open a honeycomb.
We will instead discover it purely as a thought experiment, armed only with faith that the universe
is not only rational, but optimal.

First we need some terminology.
Definitions 1.1. A tiling or tessellation is an arrangement of flat things that fit together, without

gaps or overlap, to cover all or some of the plane.

For many beautiful tessellations by M.C. Escher, go to
www.josleys.com/galleries.php?catid=6

and click “Escher tilings”.

The flat things we would like to tile with are polygons, of a particular kind. On the next page, we
have photos of some nice tessellations of this kind, made by students at our tessellation workshops.

Definition 1.2. We assume, for this Magnification, that the reader knows the definition of a
polygon. Here is awkward-sounding terminology that specifies the number of sides of a polygon.

For n =3,4,5,..., an n-gon is a polygon with n sides.

For example, a 3-gon is a triangle, a 4-gon is a quadrilateral, a 5-gon is a pentagon, and a 6-gon
is a hexagon.
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Definition 1.3. The interior angle of a convex polygon at a vertex of said polygon is the angle
of smaller measure formed by the two sides meeting at said vertex.
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Definition 1.4. A regular polygon is a convex polygon with sides of equal length and interior
angles of equal measure.

A regular 3-gon is also called an equilateral triangle; a regular 4-gon is also called a square.
A regular pentagon is related to the golden ratio ¢ in surprising ways; see [1, Remarks 1.7].
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2. TILING with COPIES of a FIXED REGULAR POLYGON
In this section, we will address the following question.
Big Question 2.1. For what n can we tessellate with copies of the same regular n-gon?

Discussion 2.2. Consider tessellating with copies of a regular 4-gon, that is, a square. After sliding

copies around, if necessary, we get the arrangement of streets in the downtown area of an organized
city, as drawn below.
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Notice that groups of 4 contiguous squares then meet at the same point; that is, the 4 squares
share a vertex, as drawn below.

Recall that a complete rotation measures 360 degrees. In order that 4 squares fit together as
drawn above, it must be that each interior angle of a square measures

0
% degrees = 90 degrees .

360 quo
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The same is true for any tiling with copies of a fixed regular polygon: the interior angles in said
polygon must measure, for some integer &, %, so that k£ copies of an interior angle have measures
adding up to an angle of measure 360 degrees, implying that k copies of the regular polygon fit
together at a shared vertex. See Table 2.3 on the next page, listing all possible interior angles for
tiling with a fixed regular polygon.




In the following, all angle measures are in degrees. The heading “number of copies” is shorthand
for “number of copies of regular polygon fitting together at shared vertex.” The fitting is sketched
at the right of the table.

Table 2.3

Number of Copies Measure of Interior Angles

2 360 — 180 +

3 380 =120 Y
4 360 — 90 "+"’
5 B0 =12 *

6 380 = 60 %

7 380 51 *

8 380 — 45 ,%
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Discussion 2.4. We have shown (Discussion 2.2 and Table 2.3) that tiling with regular polygons
requires the correct (listed in the second column of Table 2.3) interior angles. Let s worry about
interior angles in a regular polygon.

You may have heard that the sum of the measures of the interior angles in a triangle is 180
degrees (see [3, C.C page 17]). Similar results hold for any polygon; for simplicity, let’s restrict
ourselves to regular n-gons.

The sum of the measures of the interior angles in a square (a regular 4-gon) may be seen to be
360 = 2 x 180 degrees with the following picture

since
(sum of measures of interior angles) = 65 + (64 +63) + 61 + (62 +65) = (61 + 62 +63)+ (04 +65 +6)

=180 + 180 = 2 x 180 = 360 degrees.

The sum of the measures of the interior angles in a regular 5-gon is similarly 540 = 3 x 180
degrees:

In general (see [2, Corollary 3.10] for details), for n = 3,4, 5, ..., the sum of the measures of the
interior angles in a regular n-gon is (n —2) x 180 degrees, thus the measure of each interior angle in
a regular n-gon is

(n—2)
n

180 degrees.

See Table 2.5 on the next page. All angle measures are in degrees.




: Table 2.5

n = Number of Sides Number of Triangles Sum of Measures of Interior Angles Measure of Interior Angles

3 1 1 x 180 = 180 180 — 60

4 2 2 x 180 = 360 360 — 90

5 3 3 x 180 = 540 580 =108

6 4 4 x 180 = 720 20 = 120

7 5 5 x 180 = 900 900 129

8 6 6 x 180 = 1,080 1080 =135

e 0 ° e
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Compare Table 2.3, giving the interior angle measures that are needed for tiling, to Table 2.5,
giving the interior angle measures that are possible for a regular n-gon. Said comparison will answer
Big Question 2.1.

Answer 2.6, to Big Question 2.1. We can tessellate with copies of the same regular n-gon only
when n = 3,4, or 6.

That is, we can tessellate only with copies of an equilateral triangle, or with copies of a square,
or with copies of a regular hexagon.

% s

n=@
Nn=3

It is surprising that, out of the infinitely many possibilities (n-gons, with n equal to 3,4,5,...)
there are only three regular polygons (n equal to three, four, or six) with which we can tessellate as
in 2.1.




3. COMPARISON of TESSELLATIONS with TRIANGLES,
TESSELLATIONS with SQUARES, and TESSELLATIONS with HEXAGONS

Assume throughout this section that a honeycomb stores food in containers whose cross sections
are copies of a fixed regular polygon. Section 2 showed (Answer 2.6) that, to make the cross sections
tessellations, the fixed regular polygon must be either a triangle, square, or hexagon; that is, we
must do our tiling with only equilateral triangles, only squares, or only regular hexagons.

The question remains whether to choose equilateral triangles, squares, or regular hexagons.

We will show in this section (Theorem 3.1) that a tessellation with regular hexagons is superior
to a tessellation with squares, which in turn is superior to a tesselation with equilateral triangles, in
a way that we will now describe.

The containers described in the first sentence of this section are made of beeswax. On a cross
section, this beeswax is the perimeter of the regular polygon, drawn in red below, and the stored
food is in the interior of the regular polygon, shaded in black below.

Since beeswax is a big deal to produce, we'd like to store as much food as possible, for a fixed
amount of beeswax. In terms of the polygonal cross section, we want, for a fixed perimeter, as much
area as possible.

Theorem 3.1. (a) A regular hexagon has a greater area than a square with the same perimeter.

(b) A square has a greater area than an equilateral triangle with the same perimeter.

area
perimeter’

In particular, hexagons maximize
tessellations.

the ratio of area to perimeter, among the possible

Proof. Just to keep our numbers simple, we will assume we have beeswax for a perimeter of 12
inches; the same argument, with more awkward numbers, would work for any perimeter.

We are comparing the shaded areas of a regular hexagon whose sides each measure 2, a square
whose sides each measure 3, and a triangle whose sides each measure 4, as drawn below.
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We will find it convenient to focus initially on a triangle whose sides each measure 2.

Draw a perpendicular line segment from a vertex to the opposite side, as drawn below.

By the Pythagorean theorem, the two line segments formed by the intersection of the afore-
mentioned perpendicular line segment with the opposite side have equal length (see drawing above).

Since their lengths add up to 2, each of the two line segments just mentioned have length 1, as drawn
below.

A Z

1 1

By the Pythagorean theorem again, our perpendicular line segment has length /3.

[ I

Our triangle whose sides each measure 2 is now seen to have area

5 (base) height) = (3)(2)(v3) = V3.
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| Now let’s address the polygons (i), (ii), and (iii).

First, the easiest polygon: for a square whose sides each measure 3, the area is

32 = 9 for the area of (ii).

For the other polygons, we would like to argue that (i) is four triangles, each of whose sides
measure 2, put together, while (iii) is six such triangles put together, as drawn below.

|

O~re o

4fz! ~ 6.9
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To justify the pictures we just drew (in particular, we need to believe that the black line segments
each measure 2), we need the following, from [3, C.A page 15] (title not from [3]):

Sides versus Angles. In any triangle, two sides have equal length if and only if the angles opposite
the sides have equal measure.

Consider polygon (i), drawn in red below. Draw, in black, lines between midpointsof each side.

2 g

: >

Focus on the leftmost triangle; the same argument will apply to the other triangles.

By “Sides versus Angles,” 6; = 6, thus by the second paragraph of Discussion 2.4, measuring
in degrees,
180 = 60 + 61 + 62 = 60 + 26,
so that
01 = 02 = 60;
applying “Sides versus Angles” again tells us that the black line segment is of length 2, as desired.

Now consider polygon (iii). Three triangles, each of whose sides measure 2, may be placed side
by side with no gaps as follows:
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Since the sum of the indicated angle measures is 180 degrees, the base of the figure just drawn
is a single line segment, thus said figure can be reflected through its base without creatmg any gaps,
to get the desired picture of (iii).

Having drawn both (i) and (iii) as unions of triangles whose areas have been shown to be v/3,
we merely count the number of said triangles in each union, to get the area of (i) equal to 4v/3 ~ 6.9
and the area of (iii) equal to 6v/3 ~ 10.4.

Since 6v/3 is greater than 9, we get (a); since 9 is greater than 4v/3, we get (b). O

Other Hexagons 3.2. When basaltic lava cools, it sometimes breaks into columns whose top is a
tessellation. Assuming the cooling is uniform, we might expect the tessellation to consist of copies
of a fixed polygon.

As with honeycombs, Section 2 showed that the top of these columns should consist primarily
of equilateral triangles, squares, or regular hexagons.

Theorem 3.1 implies that hexagons minimize W':‘T:te the ratio of perimeter to area, hence
minimize the force required to break up a given area of lava. Thus, for a fixed mass of lava, as it
cools the force trying to break it up increases continuously, and will reach the force needed to break
up into hexagons before it reaches the force needed to break up into squares or triangles.

The analysis of the previous paragraph comes through approximately in fact: the top of the
columns broken is predominantly a tessellation with fairly regular hexagons. See, for example,
pictures of Devil’s Postpile on the web, including Wikipedia. The qualifier “approximately” is due
to the presence of other geologic factors.

See also pictures of Giant’s Causeway in Northern Ireland.
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