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POPULATION GROWTH MAGNIFICATION

This is one of a series of very short books on math, statistics, and physics called “Math Magnifi-
cations.” The “magnification” refers to focusing on a particular topic that is pivotal in or emblematic
of mathematics.

OUTLINE

Our goal is to predict the population in the future. This begins with modeling the present. In
this Magnification, we will present and apply three popular models: linear, exponential, and logistic.

Prerequisites for this magnification are first-year high school algebra ([2] is more than sufficient).




1. INTRODUCTION
This section will mostly be terminology, in part to communicate the generality of our models.

Definition 1.0. The symbol “=” means is defined to be.

Definitions 1.1. A population is the number of inhabitants of a specified kind in a specified
place. “Inhabitants” could mean people, but does not have to. Other inhabitants of interest might
be feral cats in the woods outside a big city, bugs on a farm, one-celled organisms in standing water,
or money owed (this will be the subject of a future magnification).

A generation is any fixed length of time, at multiples of which we measure (that is, count) our
population. A generation could be seconds, minutes, hours, days, weeks, months, years, decades,
centuries, millenia.

For a reproducing organism, the most natural definition of generation is the average time that
elapses between birth and giving birth.

Definitions 1.2. Population will be denoted P. Py will be the initial population, meaning the
population now or whenever we start our clock.
For N =0,1,2,3;::

Py = population after N generations.

A list of all the populations in order, Py, P1, Ps, Ps,. .., is a sequence of numbers.

Quick Summary 1.3. Linear growth, where the population is increased by the same number
every generation, will be in Section 2; the general story is in 2.3. The corresponding sequence is
then arithmetic. Ezponential growth, where the population is multiplied by the same number every
generation, will be in Section 3; the general story is in 3.3. The corresponding sequence is then
geometric. Logistic growth, introduced in Section 4, is a modification of exponential that is more
realistic, especially in the long term, and (usually, in practice) has the very desirable feature of
converging to an equilibrium state in the long term; see 4.3 and 4.5.

Both linear and exponential growth will be given both a recursive and an ezplicit description. A
recursive description defines the population in a generation entirely in terms of the population the
previous generation; e.g., “the number of flat worms quadruples every day.” An explicit description
defines a population entirely in terms of the initial population and the number of generations that
have elapsed since we started our clock; e.g., “5(4V) flat worms N days after January 1, N =
0,1,:2,3,...."

Logistic growth is given only a recursive description.

Remark 1.4. Another famous sequence, the Fibonacci numbers, also arises from a population model
that may be considered a modification of exponential-more precisely, a modification of doubling
where reproduction requires maturity-see [1].

We summarize our population formulas in Section 5. Section 6 has more examples, to prepare
the hypothetical reader of this Magnification for the homework. Hints are given, on the page before
the answers, for some of the homework.




2. LINEAR GROWTH

Definition 2.1. Linear growth means the same amount is added to the population every gener-
ation.

Example 2.2. In a beehive, all reproduction is done by the queen bee.
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Suppose she produces 4 bees every minute.
If we have 10 bees at noon today, we’'d like to know how many bees we’ll have in the future.

Denote by
Py = the bee population at 12:00

P; = the bee population at 12:01
P> = the bee population at 12:02
P3 = the bee population at 12:03

A recursive description of the bee population is, in words, “add 4 every minute.”

Starting with our Py of 10, we recursively obtain
P=Py+4=104+4=14
P,=P+4=14+4=18
P3=P,+4=18+4=22
Py=P3+4=22+4=26

There is no theoretical limit to how many times we apply the recursive description, hence no
theoretical limit to how far into the future we can predict the population of bees. But one could
argue the physical limit of getting tired from repeated calculations. For example, if we wanted the
number of bees at 1:00, we would add 4 60 times, to get from Py to our desired Pgo.




Let’s try for a shortcut to getting Pgo. Our goal is to “add 4 60 times.” This is the same as
“adding 4 x 60.” Let’s illustrate this type of shortcut with Py, Py, Ps, P3, Py, calculated above, then
jump ahead to getting Pgo with this method.

Py=10+4x0=10
P=10+4x1=14
P,=10+4%x2=18
P;=10+4%x3=22
Py=10+4x4=26
Ps=10+4x5=30

Pgo =10 + 4 x 60 = 250.

We feel emboldened to make a huge intellectual leap. For any N =0,1,2,..., let

Py = the population N minutes after noon.

Notice, in Py, P1, P», P3, Py above, that the subscript of P equals the multiple of 4; e.g., rewriting
Pgo directly below, we have circled the two places where 60 appears.

@:1%4@250.

Follow this pattern, between subscript and what 4 is multiplied by, to get the very general
formula

Py=10+4xN=10+4N, N=0,1,2,3....

The formula we just wrote down is an ezplicit description of the population. It means, for
example, that Pjg9, the population 192 minutes after noon, is 10 + 4 x 192 = 778.

A similarly compact recursive description of our bee population is
Py =Pn_1+4, N=1,2,3,...;
this is shorthand for infinitely many statements
Py = Pg+4,Ps7 = Psg + 4, P; = P + 4, etc.

With the explicit description, we arrive at a population at any specified time immediately. For
example, we could get
Pz,ooo =10+4 x 2,000 = 8,010,

without getting Py, P>, Ps, ... P; gg9 first, as we would have to do with our recursive description.

The recursive description focuses on the change in population, and often is our first descriptive
representation from our initial information, e.g., “add 4 every minute.”

In this example, Py = 10 is the initial population and 4 is the common difference, denoted d,
between two consecutive populations.

The sequence of numbers Py, Py, Py, --- = 10,14,18,22, ... is an arithmetic sequence, character-
ized by the difference between consecutive terms being constant.
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LINEAR FORMULAS and TERMINOLOGY 2.3. Here's the general story for linear growth,
where, for N =0,1,2,3,...,

Py = the population after N generations.

Recursive: Py = Py_1y+d, N=1,2,3,...;

Explicit: Py = Ph+dN, N =0,1,2,3,....

Py is the initial population and d is the common difference, the number that one adds to
a population, to get the population the next generation.

The sequence Py, P, P, ... is then an arithmetic sequence, meaning a sequence of numbers
where the difference between consecutive terms is constant.

Practice 2.4. On the next page, fill in missing populations Py, N = 3,4, 5, 6, both recursively and
explicitly, and fill in Py and Pso explicitly.

The page after the next page has answers.




LINEAR GROWTH
add 3 every day
q (3 =d = common difference)
population of 8 today

(P_0=28)

RECURSIVE EXPLICIT
N P_N=P_{N-1} + 3: Add 3 to previous day P_N =8 + 3N: 8 plus 3x(number of days)
0 8 8

(=P_0) (P_0 =8+ 3x0)

1 11=8+3 11 =8 + 3x1

(P 1=P 0+3) (P_1=8+3x1)
2 14=11+3 14 =8 + 3x2

(P2=P_1+3) (P_2=8+3x2)
3

(P.3=P 2+3) (P_3 =8+ 3x3)
4

(P.4=P 3+3) (P_4 =8+ 3x4)
5

(P.5=P 4+3) (P_5 =8+ 3x5)
6

(P.6=P 5+3) (P_6 =28+ 3x6)
1o}

(P_{10} = 8 + 3x10)

50




LINEAR GROWTH
add 3 every day

(3 =d = common difference) F 7
population of 8 today
(P_0=28)
RECURSIVE EXPLICIT
N P_N=P_{N-1} + 3: Add 3 to previous day P_N =8 + 3N: 8 plus 3x(number of days)
0 8 8
(=P_0) (P_0 =8+ 3x0)
1 11=8+3 11 =8 + 3x1
(P.1=P 0+3) (P_1=28+3x1)
2 14=11+3 14 =8 + 3x2
(P2=P_1+3) (P_2=8+3x2)
3 17=14+3 17=8+9
(P.3=P 2+23) (P_3 =8+ 3x3)
4 20=17+3 20=8+12
(P 4=P 3+3) (P_4 =8+ 3x4)
5 23=20+3 23=8+15
(P5=P 4+3) (P_5 =8 + 3x5)
6 26=23+3 26 =8+ 18
(P 6=P 5+23) (P_6 =8+ 3x6)
38=8+30
(P_{10} = 8 + 3x10)
158 = 8 + 3x50
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Examples 2.5. Assume fractional values of Py are possible.

(a) Suppose there are 9 scumslugs today and the population of scumslugs increases by 6 every day.
How many scumslugs will there be 20 days after today?

(b) Write a recursive description of the scumslug population in (a).
(c) Write an explicit description of the scumslug population in (a).

(d) Which of the following sequences are arithmetic? For those that are, get the common difference.
(1)'0;5;10,15, . ;

(i) 2,7,12,17, ...

(iii) 2,4, 8,16, . ..

iv) 0,1,4,9,...

v) 5,8,11,14,....

(
(
(e) Suppose Py =4, P, = 7,... describes linear growth. Get Pjq.
(f) Suppose Py describes linear growth, Py = 20 and P = 60. Get Pjg.
(g) In (f), get an explicit description of Py.

(

h) Suppose Py describes linear growth, Ps = 15 and Pag = 45. Get the common difference d without
getting Pp.

(i) In (h), get a recursive description of Py without getting P.
(j) In (h), get Po.

(k) Suppose Py, P, Ps,... is an arithmetic sequence of populations. If P;y = 97 and P3y = 257,
what is Py?

(1) If Py = 18 and Py = Py_1 + 12 is a recursive description of linear growth, find an explicit
description.

(m) If Py =123+ 13 x N is an explicit description of linear growth, find a recursive description.
ANSWERS

(a) 9+ 6 x 20 = 129 scumslugs. (Add 6 20 times, to 9.)

(b) The common difference here is d = 6, so

Py = Pyn_1 + 6, N=1,23,...

(¢) Pb=9,and d =6, so
Py =9+4+6N, N=0,1,2,...

(d) We need to look at differences between consecutive terms.

In (i), (5—0) = (10 —5) = (15— 10) = 5, so (i) is arithmetic, with common difference d = 5.
In (ii), (7 —2) = (12 = 7) = (17 — 12) = 5, so same conclusion for (ii) as for (i).

In (iii), (4 — 2) # (8 — 4), so (iii) is not arithmetic.

In (iv), (1 —0) # (4 — 1), so (iv) is not arithmetic.

In (v), (8 —=5) = (11 — 8) = (14 — 11) = 3, so (v) is arithmetic, with common difference d = 3.

(e) The common difference d is (7 —4) =3,s0 Pjg= Py +3x 10 =4+ 3 x 10 = 34.
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(f) Denote by d the common difference. To get from Py to Ps we must add d 8 times; that is,

60 = Pg = Py+d x 8 = 20+ 8d implies that d equals 5, so that Pig = Py+5x 16 = 20+5x 16 = 100.
Alternatively, we might have noticed that getting from Pg to Pj¢ is the same number of gener-

ations (16 - 8 = 8) as getting from P, to P, thus we are making the same increase in population:

40 = (60 — 20) = (Ps — Py) = (P16 — Pg) = (P16 — 60),
and solving for Pjg again gives us 100.
(g) In (f) we got d =5, thus
Py =FPy+5xN=20+5N, N=0,1,2,3,....
(h) Denote by d the common difference. Getting from P to P»g requires that we add d(28 — 8) =20
times; that is,

45 = Pog = Pg +d x 20 = 15 + 20d,
which implies that d = 1.5.

(i) Py = Pny-1+15, N=1,2,3,....
(j) We are going 8 generations backwards from Pg, so we subtract dx8 from Px, to get Py:
Py=PFPs—-dx8=15—(1.5) x 8 =3.
Or we could set up an equation:
15=Ps=PFPy+dx8=Py+12,
and we may solve for P to again get 3.
(k) This is similar to (h)—(j):
257 = P3g = Pjg+d x (30 — 10) = 97 + 20d

implies that the common difference d equals 8, so that

Py =P p—dx10=97—-80=17.

Alternatively, it takes 20 generations backwards to get from Psg to P and 10 generations
backwards to get from Pyg to Pp, so we need half the difference between P3g and Pi:

1 1 1
80 = 3 x 160 = 3 x (257 — 97) = 3 x (P3g — Pyo);
we subtract 80 from P to get to Py:
Py =P1p—80=97—-80=17.

(1) The common difference d equals 12, so
Py =P +12x N=18+12N, N=0,1,2,3,....

(m) The common difference d equals 13, so
Py =Pn_1+13, N=1,2,3,....
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3. EXPONENTIAL GROWTH

This section will be more cursory than Section 2, because the exposition and results are so
analogous to Section 2. Here is a quick summary: addition in Section 2 is changed to multiplication
in this section.

Definition 3.1. Exponential growth means you multiply the population by a fixed number every
generation.

Example 3.2. An organism doubles every minute. If we have ten of said organism at noon today,
how many can we expect in the future?

As in Section 2, denote by
Py = the population at 12:00
P; = the population at 12:01
P, = the population at 12:02
P53 = the population at 12:03

Il

Py = the population at N minutes after noon
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A recursive description of the population is
Py =2(Pn-1)s N =1,2:8,:.:; ;
in words, “double every minute” or “multiply by 2 every minute.” This is shorthand for
Py =2% Fy=2%10=20
P,=2xP,=2x20=40
P3=2x P, =2x40=80
Py =2xP;3=2x80=160

As with recursive linear growth, the slowness of getting populations far in the future should
concern us. For example, to get Py, the population at 12:20, we would have to multiply by 2
20 times. We now cleverly observe, analogous to Section 2, that “multiply by 2 20 times” means
“multiply by 22°”; in the following, (2 x 2 x 2 x --- x 2) contains 20 repetitions of 2:

Pyy=10x (2x2x2x---x2) =10 x (22°) = 10, 485, 760.

An explicit description of our population is the formula
Py =10x2N =10(2"), N=0,1,2,3,....

In this example, r = 2 is the common ratio for the geometric sequence of populations
Py, Py, Ps, - -- = 10,20, 40,...

As in Section 2, we are ready to generalize.

EXPONENTIAL FORMULAS and TERMINOLOGY 3.3. Here’s the general story for
exponential growth, where, for N =0,1,2,3, ...,

Py = the population after N generations.

Recursive: Py =r(Pn-1)), N =1,2,3,...;

Explicit: Py = Py(rN), N=0,1,2,3,....

Py is the initial population and r is the common ratio, the number that one multiplies a
population by, to get the population the next generation.

The sequence Py, Pi, P,,... is then a geometric sequence, meaning a sequence where the
ratio between consecutive terms is constant.
Practice 3.4. On the next page, fill in missing populations Py, N = 3,4, 5, 6, both recursively and
explicitly, and fill in Pj and Psg explicitly.

The page after the next page has answers.




EXPONENTIAL GROWTH
multiply by 3 every day
(3 = r=common ratio)

population of 2 today

(P_0=2)
RECURSIVE EXPLICIT
N P_N = 3xP_{N-1}: P_N = 2x(3”N):
multiply previous day by 3 2 times (3 raised to Nth power)
0 2 2 =2x1
(=P_0) (P_0=2x(3"0))

1 6 = 3x2 6 = 2x3

(P.1=3xP_0) (P_1=2x(3M))
2 18 = 3x6 18 = 2x9

(P.2=3xP_1) (P_2=2x(3"2))
3

(P.3=3xP_2) (P_3=2x(3"3))
4

(P_4=3xP_3) (P_4=2x(3"))
5

(P 5=3xP_4) (P_5= 2x(3"5))
6

(P 6=3xP_5) (P_6=2x(3"6))
10

(P_{10} = 2 x (3{10}))

200 o iieinaceies Ml




EXPONENTIAL GROWTH
multiply by 3 every day
(3 = r=common ratio)

population of 2 today

(P_0=2)
RECURSIVE EXPLICIT
N P_N = 3xP_{N-1}. P_N = 2x(3”N):
multiply previous day by 3 2 times (3 raised to Nth power)
0 2 2 =2x1
(=P_0) (P_0 =2 x(3%0))
1 6 = 3x2 6 = 2x3
(P_1=3xP 0) (P_1=2x(3M))
2 18 = 3x6 18 = 2x9
(P.2=3xP_1) (P_2=2x(3"2))
3 54 = 3x18 54 = 2x27
(P.3=3xP_2) (P_3=2x(3"3))
4 162 = 3x54 162 = 2x81
(P 4=3xP_3) (P_4=2x(3"4))
5 486 = 3x162 486 = 2x243
(P.5=3xP_4) (P_5= 2x(3"5))
6 1,458 = 3x486 1,458 = 2x729
(P_6=3xP_5) (P_6 =2 x(3%6))
O - e v eomonments venmsainss 118,098 = 2x59,049
(P_{10} = 2 x (3M{10}))
20 6,973,568,802 = 2x(3*{20})
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Examples 3.5. Allow fractional or irrational populations, where needed.

(a) Suppose there are 9 scumslugs today and the population of scumslugs is multiplied by 2.5 every
day. How many scumslugs will there be 20 days from now?

(b) Write a recursive description of the scumslug population in (a).
(c) Write an explicit description of the scumslug population in (a).

(d) Identify each of the following sequences as arithmetic, geometric, or neither. If arithmetic, get
the common difference; if geometric, get the common ratio.

(i) 1,3,9,27,...
(ii) 2,6, 18,54, ...

(iii) 2, 5,8, 11,. ..

(iv) 1,4,9,...

(v) 0.5,1,2,4...

(vi) 0.5,1,1.5,2,...

(e) Suppose Py =2, P; = 6,... describes exponential growth. Get Pjg.

(f) Suppose Py describes exponential growth, Py = 1 and P, = 9. Get Psy.
(g) In (f), get an explicit description of Py.

(h) Suppose Py describes exponential growth, P3 = 250 and Py = 1,250. Get the common ratio r
without getting Py.

(i
()1
(k) In (h), get Py.

In (h), get a recursive description of Py without getting Pp.

=

n (h), get P> without getting Py.

(1) If Py =18 and Py = 12 x Py_; is a recursive description of exponential growth, find an explicit
description.

(m) If Py = 7 x 3" is an explicit description of exponential growth, find a recursive description.
ANSWERS
(a) Po =9 and the common ratio r is 2.5:
Py =9 x (2.5)%° ~ 818,545, 232.
(b) PN =20 X PN—l, N = 1,2,3....
(c) Pn=9x (25N, N=0,1,2,....

(d) For arithmetic, check the differences between consecutive terms; for geometric, check the ratios
of consecutive terms.

(i) 2 = § = ZL = 3, so geometric with common ratio 3.

(i) § =18 = 52 = 3, so same conclusion as (i).

(iii) (5 —2) = (8 = 5) = (11 — 8) = 3, so arithmetic with common difference 3.

(iv) (4 —1) # (9 —4), so not arithmetic; § # §, so not geometric; neither.

(v) 017,’ =4 = % = 2, so geometric with common ratio 2.

(vi) (1-0.5) = (1.5—1) = (2 — 1.5) = 0.5, so arithmetic with common difference 0.5.
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(e) The common ratio r is £& = §=3,s0

Py
Pyp =2 x 3% = 118, 098.

(f) Denote by r the common ratio. 9 = P, = Py x 72 =12, so r = 3, thus

Pyy = Py x 320 = 320 — 3,486, 784, 401.
(g) Py =3Y, N=0,1,2,....

(h) r equals the ratio of consecutive terms £ = 1250 _ 5
Ps 250

(i) Py =5Py_1, N=1,2,3,....

(j) Since we're going backwards in time, from P3 to P», divide by 5 instead of multiplying by 5:
1 250

Po=—-xP3=— .
2 5X3 5 50

Alternatively, we could use (i): 250 = P3 = 5 x P, and solve for Ps.

(k) We're going two generations backward to get from P, to P, so divide by 5 twice:
1\? 50
0 (5) X 2 52
Or, we could use (i) twice, as in (j), first to get P; = 10, then to get Py = 2.
(I) The common ratio is r = 12, so
Py=18x12N, N=0,1,2,....

(m) The common ratio is now 3, so
Py=3Py_1, N=1,2,83,....

Remark 3.6. Exponential growth with a common ratio greater than one is always eventually larger
than any linear growth. Below we've graphed exponential growth in red, linear growth in black.
Linear growth has a constant rate of growth (also known as slope), while, with exponential growth,
the rate is also increasing. For a quick numerical example, compare 2"V (exponential growth) to 2V
(linear growth), for N =0,1,2,....

iy

@

q
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4. LOGISTIC GROWTH

Exponential growth, introduced in the previous section, seems plausible, at least in the short
term, for both asexual (see Example 3.2) and sexual reproduction; for example, if a population
breaks into pairs, and each pair has 6 offspring, then goes away, we would have the population
tripling every generation.

Something that should give us pause, with this model of population growth, is how large popu-
lations can become. If we started with ten organisms, then the population 30 generations from now,
if subject to tripling every generation, would be

P3¢ =10 x 33° ~ 2,000, 000, 000,000,000 = 2 quadrillion.

If we were speaking to a class, instead of typing symbols into a word processor, we would now
ask the class “When might exponential growth be unrealistic?” The answer we usually get to this
question is something like “when the population runs out of food.” A modification of exponential
growth is needed when it would imply too big a population.

Definitions 4.1. The carrying capacity, usually denoted C, is the maximum population possible.
We use this to define the relative population

P
PN = FN (N=0,1,2,3,...),
where Py is the population after N generations.

Note that 0 < py < 1, for any N and any population.

Example 4.2. If the population Pyg after 10 generations is 40,000, and the carrying capacity is
200,000, then the relative population after 10 generations is
40,000

P1o

Definitions 4.3. The recursive description of exponential growth with common ratio r (see 3.3)
becomes, after dividing by C,pny = rpy_1.

The logistic growth model is

PN = TpN_1(1 = pN-l)’ N = 1, 2,3, siere
The number r is called the growth parameter.

As the population approaches the carrying capacity, so that pyx_; approaches 1, the extra
(1 — pny—1) term in the logistic model slows down the population growth, thus making logistic
growth more realistic than exponential growth.

Notice that our logistic growth model is a recursive description; there is no simple explicit
description.

Examples 4.4. In all logistic calculations, it is very convenient to use a calculator that saves all
data, including numbers that aren’t showing on the screen. Our printed numbers below are all
rounded to ten decimal places, but our calculator saves information beyond ten decimal places.

All examples below are logistic py.




(a) For r = 3, pg = 0.1, we have
p1 = 3po(1 — po) = 3(0.1)(1 — 0.1) = 0.27;
p2 = 3p1(1 — p1) = 3(0.27)(1 — 0.27) = 0.5913;
p3 = 3pa(1 — p2) = 3(0.5913)(1 — 0.5913) = 0.72499293.

If we only want p3 rounded to two decimal places, our answer would be 0.72.
Watch what happens if we round to two decimal places at each step of the recursion:

p2 ~ 0.59 — p3 ~ 3(0.59)(1 — 0.59) = 0.7257,
which, rounded to two decimal places, equals 0.73.

The moral of this is that any rounding should be put off until the last step of the recursions.

(b) For r = 1.6, pg = 0.8, rounded to ten decimal places by our calculator,
p1 = 1.6pg(1 — po) = 1.6(0.8)(1 — 0.8) = 0.256;
p2 = 1.6p1(1 — p1) = 1.6(0.256)(1 — 0.256) = 0.3047424;
p3 = 1.6p2(1 — p2) = 0.3389991514;
pa = 1.6p3(1 — p3) = 0.3585259628;

)
ps = 1.6pa(1 — psg) = 0.3679761549;
pe = 1.6p5(1 — ps) = 0.3721115269;
p7 = 1.6ps(1 — pg) = 0.3738312615;
ps = 1.6p7(1 — p7) = 0.3745303191;
P9 = 1.6ps(1 — ps) = 0.3748117747;

P10 = 1.6pg(1 — pg) = 0.3749246532.

LT

Notice that the numbers py in (b) seem to be getting close to a particular number as N gets

large; for example, if we rounded to three decimal places, we have
Po = 0.8,p1 = 0.256,p2 o~ 0.305,])3 5 0.339,p4 £ 0.359,p5 ~ 0.368,
pe ~ 0.372, p7 ~ 0.374, pg ~ 0.375, pg ~ 0.375, p1g ~ 0.375, ...

(c) The choice of initial relative population py turns out to not make a difference, in what number
we get close to as IV gets large. For example, if r is still 1.6, but pg = 0.1, we leave it to the reader

to calculate, then round to three decimal places,
Po = 0.1,p1 = 0.144,p2 ~ 0.197,p3 ~ O.253,p4 ~ 0.303,p5 r~ 0.338,
Pe ~ 0.358,p7 ~y 0.368,p3 ~ 0.372,])9 ~ O.374,p10 ~ 0.375,p11 ~ ).375

(d) The choice of growth parameter r does make a difference, in what number we get close to as N

gets large. For r equal to %, po = 0.3, we get, rounded to ten places by our calculator,
P = %(0.3)(1 —0.3) =0.28,
—_ %(o.zs)u — 0.28) = 0.2688,
p3 = %(0.2688)(1 —0.2688) = 0.26206208,
Py = %pa(l — p3) = 0.257847395,

4
ps = §p4(1 — pg) = 0.2551494878.

Here’s the pattern.
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Long-term behavior Theorem 4.5. For 1 < r < 3, if py satisfies the logistic growth model as
in Definitions 4.3, then py can be made arbitrarily close to (1 — %) by making N sufficiently large,
regardless of pp between 0 and 1. '

In the language of calculus, py converges to (1 — %), denoted py — (1 — %) as N — oo, or

1
l. = 1 —_ -
dim py = ( T),

shorthand for the limit, as N goes to oo, of pn, equals (1 — %)

For example, in Examples 4.4(b) and (c), (1 — 1) = (1 — {%) = 0.375; the long-term behavior of
pn in Examples 4.4(b) and (c) is convergence to 0.375.

In Examples 4.4(d), (1—1) = (1 - é—) = 0.25; the long-term behavior of px in Examples 4.4(d)

is convergence to 0.25.

Practice 4.6. On the next page, fill in py (rounded to 4 decimal places) for N = 1,2,3,...,15.
Also describe long-term behavior. The page after the next page has answers.




LOGISTIC GROWTH:
P_N=rp_{N-1}(1 - p_{N-1})

N | pNr=2 pNr=2 pNr=15
0 0.3000 0.9500 0.6000
(=p_0) (=p0) (=p0)

1 0.3600
(p_1=2p_0(1-p_0)) (p_1=(1.5p_0(1-p_0))

2 0.3456
(p_2=2p_1(1-p_1)) (p_2=(1.5)p_1(1-p_1))

3 0.3392
(p_3=2p_2(1-p_2)) (p_3=(1.5)p_2(1-p_2))

4] 0.3362

5] 0.3348

6 | 0.3340

7] 0.3337

8] 0.3335

9] 0.3334

10] 0.3334

o 0.3334

12] 0.3333

13|

14]

15|

NOTE |

(1-(1/2))=0.5

(1-(1/1.5)) = (1/3) ~ .3333




LOGISTIC GROWTH:

f‘ 0 P_N=rp_{N-1}1 - p_{N-1})
N | p Nr=2 p Nr=2 pNr=15
0 0.3000 0.9500 0.6000
(=p0) (=p0) =p0)
1 0.4200 0.0950 0.3600
(p_1=2p 0(1-p_0)) (p_1=(1.5p _0(1-p_0))
2 0.4872 0.1720 0.3456
(p_2=2p_1(1-p_1)) (p_2=(1.5)p_1(1-p_1))
3 0.4997 0.2848 0.3392
(p_3=2p 2(1-p_2)) (p_3=(1.5)p_2(1-p_2))
4 0.5000 0.4073 0.3362
5] 0.5000 0.4828 0.3348
6] 0.5000 0.4994 0.3340
7] 0.5000 0.5000 0.3337
8 ] 0.5000 0.5000 0.3335
9 | 0.5000 0.5000 0.3334
10] 0.5000 0.5000 0.3334
11] 0.5000 0.5000 0.3334
12] 0.5000 0.5000 0.3333
13] 0.5000 0.5000 0.3333
14] 0.5000 0.5000 0.3333
15] 0.5000 0.5000 0.3333

{Fp coONVe4 es o 0.5,

N—>o°, sinck
(1-(1/2))=0.5

]S

f/\, Conviersey
tv 3 o VO

< ince
(1-(1/1.5)) = (1/3) ~ .3333
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5. POPULATION GROWTH FORMULAS, summarized

Py means initial population, d is common difference (for linear growth), r is common ratio (for
exponential growth). For any number N, we want to know

Py = population after N days (or minutes, or years, or whatever the time unit is).
LINEAR GROWTH:
Recursive: Py = Pin_1)+d;
Explicit: Py = Py + dN.
EXPONENTIAL GROWTH:
Recursive: Py = r(P(N-1));
Explicit: Py = Py(r").
LOGISTIC GROWTH: (py = %Y—, where C' is carrying capacity)
Recursive: py = rp(N-1)(1 — p(n—-1))-

LONG-TERM BEHAVIOR, LOGISTIC, 1 <r < 3:

1
PN converges to (1 — ;), as N goes to infinity.

EXAMPLES:

Linear, d =7,Py = 11 : Recursive: Py = Py_; +7 MEANS “add 7 every day”:

P,=Py+7=114+7=18,

P, =P +7=18+7 = 25,

Pa=P,+7=25+7=32,
. etc.

Explicit: Py =11 + 7N MEANS

P =114+7x1=18,
P,=11+7x2=25,
P3=11+7x3 =32,
SRR - R
P127:11+7X127=900,
o 868 wes
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Exponential, r = 2.5, Py = 11 : Recursive: Py = (2.5)Py_1 MEANS “multiply by 2.5 every day”:

Py = (2.5)Py = (2.5) x 11 = 27.5,
P3 = (2.5)P, = (2.5) x (68.75) = 171.875,
. ete. ...

Explicit: Py = 11(2.5") MEANS

P, = 11(2.5') = 27.5,
P, =11(2.5%) = 11 x 6.25 = 68.75,
P; =11(2.5%) = 11 x 15.625 = 171.875,
wws 066G o
Pyg = 11(2.5%%) ~ 36, 400, 000, 000, 000, 000,
s LG .
Logistic, r = 2.5,p; = 0.7 :

p1 = (2.5)(po)(1 — po) = (2.5)(0.7)(1 - 0.7) = 0.525,
p2 = (2.5)(p1)(1 — p1) = (2.5)(0.525)(1 — 0.525) ~ 0.6234,
p3 = (2.5)(p2)(1 — p2) ~ (2.5)(0.6234)(1 — 0.6234) ~ 0.5869, . ..

Long-term behavior: py converges to (1 — 2%5‘ = 0.6, as N goes to infinity.




23

6. MORE EXAMPLES

1. Suppose the initial relative population pg is 0.00001. If py, the relative population N days after
January 1, grows according to the logistic growth model with growth parameter r = 2.9, what
long-term behaviour of py should you expect?

2. Which of the following sequences are arithmetic, which are geometric, and which are neither?
For those that are arithmetic, find the common difference d; for those that are geometric, find the
common ratio r.

8. 4,8 27 ..

b. 1, 1,2, 3, 5; 8; ...

c. 2, 6, 18, 54, ...

d. 2,7, 22,67, ...

e 1,6, 11,16, 21, ...:

3. Suppose a population increases by 6 every hour. If there are 13 at noon today, how many will
there be at noon seven days from now?

4. Suppose a population is multiplied by (1.3) every day. If there are 10 on January 1, how many
will there be on January 317

5. A population of scumslugs grows according to the logistic growth model, with growth parameter
r=2.5,

pN = (2.5)pn-1(1 — pNn-1),
where py is the relative population N days after today. If py, the relative population today, equals
0.1, find the relative population p3 three days from now.

6. Suppose Py = Pn_; + 4, for any number N; that is, the population increases by 4 every
generation. If Pyo7 = 2,149, find

(a) Poo;

(b) Psqs.

(NOTE: you do not need to get P.)

7. Suppose Py = (1.2)Py_1, for any number N; that is, the population is multiplied by (1.2) every
generation. If Pj7; = 21, find

(a) Pis;

(b) Prg;

(C) P16-

(NOTE: you do not need to get P.)

For 8-12, identify
(a) if the description is explicit or recursive;
(b) if the description is of linear, exponential, or logistic growth.
(c) the common difference, if linear; the common ratio, if exponential; the growth parameter, if
logistic.

8. pn =3pNn-1(1 —pNn-1). (P1 = 3po(1 — po), p2 = 3p1(1 — p1), ...)
9. PN =15+9N. (Po=15,P1=15+9,P, =15+9x 2,...)

10. Py =3Pn_1. (P1 =3Py, P, =3P, ...

11. Py =Py_1+15. (Pi=Py+15,P,= P, +15,...)

12. Py =10(3"). (Pp=10,P, =10 x 3, P, = 10 x 32,...)
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13. Suppose Py, Pi, Ps, ... is a sequence of populations, P;; = 20 and Py = 22. Find Pi3, if
(a) the population growth is linear;

(b) the population growth is exponential.

(NOTE: you do not need to get Pp.)

14. Suppose po, p1, P2, --- is a sequence of relative populations following the logistic growth model
with growth parameter r = 2. If p1go = 0.7, what is p1g1?

15. Suppose Psq = 100 and P52 = 900.
(a) If Py is linear, find the common difference d.

(b) If Py is exponential, find the common ratio r.
ANSWERS

1. pn gets arbitrarily close to (1 — 2—%) ~ 0.655, as N gets large.

2. Checking consecutive ratios and consecutive differences, we deduce that e. is arithmetic with d

=5(05=(6-1)=(11-6)=(16-11)=...), c. is geometric withr =3 (3 = § = 18 = 3¢) the

others are neither. For example, in part a., (8 — 1) # (27 — 8), so the sequence is not arithmetic,
while % £ 2—87 implies that the sequence is not geometric.

3. This is linear, with Py = 13, common difference 6; Pryx24 = 13 + 6 x (7 x 24) = 1021.

4. This is exponential, with Py = 10, common ratio 1.3: P3p = 10 x (1.3)3° = 26,199.95644
(rounding to 26,200 makes more physical sense).

5. p1 = 2.5(0.1)(1— 0.1) = 0.225; p» = 2.5(0.225)(1 — 0.225) = 0.4359375; p3 = 2.5(p2)(1 — ps) =
0.6147399902 ~ 0.6147 (to 4 decimal places).

6. (a) To move from Psg7 to Pa19, we need to add 4 three times: P9 = Poo7+4%x3=2,149+12 =
2,161.

(b) We are moving 2 generations backward in time from Psg7, so we subtract 4 two times: Pyys5 =
P207—4 X 222,149—822,141.
Alternatively, we could’ve said (4 x 2) + Psp5 = Pag7, and solved for Pygs.

7. This is an exponential analogue of no. 6.
(a) Plg = (12) X P17 = (12) % 21 ='25.2.
(b) P19 — (12) X Plg = (12) X 25.2 = 30.24.
(

¢) Moving backwards one generation, we divide by (1.2) instead of multiplying: Pig = -4 x Pj; =
# =175

Alternatively, we could’ve observed that (1.2) x Pyg = Pj7, and solved for Pjg.
8. (a) recursive (b) logistic (c) growth parameter 3
9. (a) explicit  (b) linear (c) common difference 9
10. (a) recursive (b) exponential (c) common ratio 3
11. (a) recursive (b) linear (c) common difference 15
12. (a) explicit (b) exponential (c) common ratio 3
13. (a) The common difference is 22 —20 = 2, so Pj3 = Pja +2 = 22 +2 = 24.
(b) The common ratio is %, so Pi3 = (%) Pjp =(1.1) x 22 = 24.2.

14. pio1 = 2(p100)(1 — p100) = 2(0.7)(1 — 0.7) = 0.42.




15. (a) 900 = P52 = Pso +d x 2 = 100 + 2d, so that d = 2005100 — 400,

(b) 900 = P53 = Psg x r2 =100 x r2, so that r = %g =3

25
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HOMEWORK

0. Fill in the missing populations or relative populations in the spreadsheets at the end of this
homework, analogously to 2.4, 3.4, and 4.6.

1. For each of the following sequences, identify it as arithmetic, geometric, or neither. If arithmetic,
find the common difference d; if geometric, find the common ratio .

8. 2; b, 8, 11, ...

b. 2, 4, 18, 32, ...

® a0
w

[

. A population of scumslugs increases by 5 every day. If there are 12 today, and none die, how
many will there be 30 days from now?

3. Another population of scumslugs decides to share the reproduction chores, so that the population
is multiplied by four every day. Again starting with 12 today, how many will there be 10 days from
now?
4. For each of the following, identify the description of the population growth as
(i) linear, exponential, or logistic; and
(ii) explicit or recursive.
If linear, get the common difference d. If exponential, get the common ratio r.
a. pNv = 3pn-1(1 — pN-1)
b. Py =10(3")
c. PN =3+ Pn_1
d. Py =10+ 3N
e. PN =3Pn_1
f. Population doubles every day
g. Population increases by 5 every hour
h. Add 7 to the population every minute
i. Multiply population by 1.5 every month.
5. A population follows a linear growth model, with Py, the initial population today, equal to 8,
and Pjg, the population after 10 days, equal to 68.
a. What is the common difference d?
b. Find the population Ps4, the population after 54 days.
c. Find the explicit description of Py = the population after N days.

. A population Py, the population N years from now, grows linearly, with P;y = 64, P;5 = 84.

. By how much does the population increase each year?

oo O

. What is the initial population Py, the population now?

o

Find the explicit description Py = the population N years from now.

7. If a population Py grows linearly, with P2 = 5,124 and Pjyg5 = 5, 136, what is Py11? (NOTE:
you don’t need to get Pp)
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8. If a population Py grows exponentially, with initial population Py = 40, P; = 160, find
a. the common ratio r;
b. Ps;

c. Pyo; and

d. an explicit description Py of the population.

9. Suppose a relative population py grows according to the logistic growth model, with growth
parameter © = 3, and pg = 0.4. Find py, p2, p3, and p4.

10. Suppose a relative population py grows logistically, with pg = 0.00023 and growth parameter
r = 1.5. Describe the long-term behaviour of py.

11. Suppose a population Py has Pyy = 100 and Pgg = 110. Find Py, if

a. the population grows linearly;

b. the population grows exponentially.

(NOTE: you do not need to get Py)

12. Suppose the sequence pn, N =0, 1,2, ...., satisfies the recursive relation
pN =24pNn_1(1 —pNn-1), N=1,2,3,.....
What does pn converge to, as N goes to infinity?

13. A geometric sequence has initial term Py = 5 and common ratio r = 1.6.
(a) Find P;.

(b) Find Ps.

(c) Find Pi7.

(d) Give an explicit description of Py (N arbitrary).

14. A relative population py satisfies the logistic growth model, with initial relative population
po = 0.053 and growth parameter r = 2.2. What is the long-term behaviour of py?

15. Rewrite
P0= 5,PN =3 % PN—l’ = 1,2,3,...
as an explicit description.

16. Rewrite
Py =T7T+2N
as a recursive description.




LINEAR GROWTH
add 5 every day
(6 = d = common difference)
population of 12 today

(P_0=12)
RECURSIVE EXPLICIT
N P_N=P_{N-1} + 5: Add 5 to previous day P_N =12 + 5N: 12 plus 5x(number of days)
0 12 12
(=P_0) (P_0=12 + 5x0)
1 17=12+5 17 =12 + 5x1
(P.1=P 0+5) (P_1=12+ 5x1)
2 22=17+5 22 =12 + 5x2
(P.2=P_1+5) (P_2=12+ 5x2)
3
(P.3=P 2+5) (P_3 =12+ 5x3)
4
(P 4=P_3+5) (P_4 =12+ 5x4)
5
(P5=P 4+5) (P_5=12 + 5x5)
6
(P 6=P 5+5) (P_6 =12 + 5x6)
10
(P_{10} =12 + 5x10)
<10




EXPONENTIAL GROWTH
multiply by 2 every day
(2 = r=common ratio)

population of 3 today

—

(P_0=3)
RECURSIVE EXPLICIT
N P N =2xP_{N-1}: P_N = 3x(2"N):
multiply previous day by 2 3 times (2 raised to Nth power)
0 3 3 =3x1
(=P_0) (P_0 = 3x (2*0))
1 6 = 2x3 6 = 3x2
(P_1=2xP_0) (P_1=3x(2"1))
2 12 = 2x6 12 = 3x4
(P.2=2xP_1) (P_2=3x(2"2))
3
(P.3=2xP_2) (P_3 =23 x(2"3))
4
(P.4=2xP_3) (P_4=3x(2"4))
5
(P_5=2xP_4) (P_5= 3x(2%5))
6
(P.6=2xP_5) (P_6 =3 x(2"6))
[0

(P_{10} = 3 x (27{10}))

20

29




P2

o

LOGISTIC GROWTH I:

P_N=rp_{N-1}(1 - p_{N-1})
rounded to four decimal places

pNr=2

pNr=2

p_Nr=2

pNr=25

pNr=25

0.6000

0.0100

0.5000

0.6000

0.0100

=p0)

(=p_0)

(=p0)

=p0)

=p0)

(p_1=2p 0(1-p_0))

(p_1=(2.5p _0(1-p_0))

(p_2=2p_1(1-p_1))

(p_2=(2.5p _1(1-p_1))

(p_3=2p _2(1-p_2))

(p_3=(2.5)p_2(1-p_2))

4]

6 |

7]

8 |

10|

11]

12]

73]

14|

NOTE:

(1-(1/2))=05

(1-(1/2.5))=0.6
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SOME HOMEWORK HINTS

0. See 2.4, 3.4, and 4.6.

1. To check for being arithmetic, look at the differences between consecutive terms; for being
geometric, look at the ratios of consecutive terms.

2. “Increases by 5” means linear growth with common difference 5.
3. “Multiplied by four” means exponential growth with common ratio 4.
5. a. 68 = Pjg = Py +d x 10 = 8 + 10d.

6. a. What’s asked for is also known as the common difference d. To get from Pjg to P;5 requires
adding d five times; thus

84 = P15 = Pjg+d x 5 = 64 + 5d.

b. We can go backwards from Pjg, using d from a, but subtracting, since we decrease by d every
time we go back a year:

Py = Py — 10d.
Or, we could set up
64=P10=P0+d>< 10 = Py + 10d.

7. Moving ahead three generations, from P2 to Pjygs, increases the population by (Pyos — Pypo) =
(5,136 — 5,124) = 12, thus we can figure the increase in moving ahead six generations, from Pyo5 to
P411, must be 2 x 12 = 24.

8. a. r is the ratio of consecutive terms, in particular, the ratio of P; to Py.
b. Use r from part a: P, = rP;. Or use P, = Py(r?).

9. We only have the recursive definition.
10. Don’t calculate py, only use our (1 — %) formula for long-term behavior.

11. a. Add the common difference to Pyg.
b. Multiply Pyg by the common ratio.

12. This is asking about long-term behavior only.
14. See the hint for no. 10.
15. You need the common ratio 3.

16. You need the common difference 2.
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HOMEWORK ANSWERS

0. See the filled-in spreadsheets after the other homework answers.

1. a. ARITHMETIC, d = 3.
b. NEITHER

c¢. GEOMETRIC, r = 2.

d. NEITHER

e. NEITHER

. 124+ 5 x 30 = 162.
. 12(419) = 12,582,912,

2

3

4. a. logistic, recursive.

b. exponential, explicit; r = 3.
c. linear, recursive; d = 3.

d. linear, explicit; d = 3.

e. exponential, recursive; r = 3.
f. exponential, recursive; r = 2.
g. linear, recursive; d = 5.

h. linear, recursive; d = 7.

i. exponential, recursive; r = 1.5.

68—-8 __
. a. 0 = 6,

5
b. 8 +6 x 54 = 332.
Py =84 6N.

e

84-64 _
. a 72— =4

.64—4x10=24.
. Py =24+ 4N.

o o o

. 5,136+ 2 x (5,136 — 5,124) = 5, 160.

160 __
. a. 4—0—4

. 160 x 4 = 640.
c. 40(41%) = 41,943, 040.
d. Py = 40(4").

o o ~

9. p1 =3%x0.4x(1-0.4) =0.72; p2 = 3x0.72 x (1—-0.72) = 0.6048; p3 = 3 x 0.6048 x (1 —0.6048) ~
0.7171;p4 =3 X pP3 X (1 - p3) ~ 0.6807.

10. converges (that is, gets arbitrarily close to) (1 — %) = 1 as N gets large.

11. a. d = 10, so Pyg = 110 + 10 = 120.
b. r=1.1;80 Pgg =110 % 1.1 = 121.

12. (1-354)= 5.




13. (a) 5 x 1.6 = 8.

(b) 8 x 1.6 = 12.8.

(c) 5(1.6'7) ~ 14, 757.

(d) Py = 5(1.6M).

14. converges (gets arbitrarily close to) (1 — ﬁ) = 16—1 as N gets large.
15. Py =5x3V, N=0,1,2,....

16. Py =Pn-1 42, N=1,2,3;..+
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LINEAR GROWTH
add 5 every day
(5 = d = common difference)

population of 12 today
(P_0=12)
RECURSIVE EXPLICIT
N P_N=P_{N-1} + 5: Add 5 to previous day P_N =12 + 5N: 12 plus 5x(number of days)
0 12 12
(=P_0) (P_0 =12 + 5x0)
1 17=12+5 17 =12 + 5x1
(P 1=P 0+5) (P_1=12+ 5x1)
2 22=17+5 22 =12 + 5x2
(P2=P 1+5) (P_2=12+5x2)
‘ 3 27=22+5 27=12+15
‘ (P.3=P 2+5) (P_3 =12 + 5x3)
4 32=27+5 32=12+20
(P 4=P 3+5) (P_4 =12 + 5x4)
| 5 37-32+5 37=12+25
(P.5=P 4+5) (P_5=12 + 5x5)
6 42=37+5 42=12+ 30
(P.6=P 5+5) (P_6 =12 + 5x6)
0L v e 62 =12+ 50
(P_{10} = 12 + 5x10)
50 262 = 12 + 5x50




EXPONENTIAL GROWTH
multiply by 2 every day
(2 = r=common ratio)

population of 3 today

(P_0=3)
RECURSIVE EXPLICIT
N P_N =2xP_{N-1}: P_N = 3x(2"N):
multiply previous day by 2 3 times (2 raised to Nth power)
0 3 3 =3x1
(=P_0) (P_0 = 3x (2"0))
1 6 = 2x3 6 = 3x2
(P_1=2xP_0) (P_1=3x(2"1))
2 12 = 2x6 12 = 3x4
(P2=2xP_1) (P_2=3x(2"2))
3 24 = 2x12 24 = 3x8
(P.3=2xP_2) (P_3=3x(2"3))
4 48 = 2x24 48 = 3x16
(P 4=2xP_3) (P_4 =3x(2"4))
5 96 = 2x48 96 = 3x32
(P_5=2xP_4) (P_5= 3x(2"5))
6 192 = 2x96 192 = 3x64
(P 6=2xP_5) (P_6=3x(2"6))
10 3,072 = 3x1,024
(P_{10} = 3 x (2{10}))
P40 ) I 3,145,728 = 3x(2"{20})
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’) N LOGISTIC GROWTH I:

P_N = rp_{N-1}(1 - p_{N-1})
round to four decimal places

N pNr=2 p_Nr=2 p N r=2 pNr=25 p_Nr=25
0 0.6000 0.0100 0.5000 0.6000 0.0100
(=p0) (=p0) (=p0) (=p0) (=p0)
1 0.4800 0.0198 0.5000 0.6000 0.0248
(p_1=2p _0(1-p_0)) (p_1=(2.5p_0(1-p_0))
2 0.4992 0.0388 0.5000 0.6000 0.0603
(p_2=2p_1(1-p_1)) (p_2=(2.5)p_1(1-p_1))
3 0.5000 0.0746 0.5000 0.6000 0.1418
(p_3=2p 2(1-p_2)) (p_3=(2.5)p_2(1-p_2))
4] 0.5000 [ 01381 | 0.5000 0.6000 [ 0.3042
5] 0.5000 [ 02381 T 05000 0.6000 [ 0.5291
6 | 0.5000 | 0.3628 |  0.5000 0.6000 [ 0.6229
7] 0.5000 [ 04623 | 05000 0.6000 [ 0.5873
8 | 0.5000 [ 04972 T 05000 0.6000 [ 0.6060
9] 0.5000 [ 05000 T 0.5000 0.6000 | 0.5969
10] 0.5000 [ 05000 T 05000 0.6000 [ 0.6015
11] 0.5000 [ 05000 ] 0.5000 0.6000 [ 0.5992
12| 0.5000 | 05000 [ 0.5000 0.6000 | 0.6004
13] 0.5000 [ 05000 [ 0.5000 0.6000 [ 0.5998
14] 0.5000 [ 05000 T 0.5000 0.6000 [ 0.6001
15] 0.5000 [ 05000 | 0.5000 0.6000 | 0.6000
PN Coﬂv{ﬁf)?{ +o (7,5( ‘BN CJﬂvfrif/ To
G M“)O%/ Synee O,(o/ A [\/9/7@/
sinccC
(1-(1/2))=0.5 (1-(1/2.5)=06
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