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STATISTICAL ALGEBRAIC MODEL FITTING MAGNIFICATION

This is one of a series of very short books on math, statistics, and physics called “Math Magnifi-
cations.” The “magnification” refers to focusing on a particular topic that is pivotal in or emblematic
of mathematics.

OUTLINE

This Magnification addresses data that we expect, at least on average, to fit a certain algebraic
model.

One example is a random variable, call it Y, that is, on average, a function of another random
variable, call it X. The ultimate goal is to use measurements of X to predict Y. This is sometimes
called regression.

Another example is the class of problems with the acronym ANOVA (“analysis of variance”),
with the scientifically and politically important null hypothesis of populations being equal, on aver-
age.

After putting our measurements of Y, denoted Y1, Y2, - - -, Yn, into an ordered n-tuple

7= (Y1,¥2,--,Yn),

we will formulate problems and solutions in an intuitive geometric way, as finding the best approxi-
mation of ¥ from a desired model subset of ordered n-tuples by dropping a perpendicular onto said
model. See 4.2, 4.3, and 9.4.

The decomposition of Y into two parts, one part explained by the model and the another part
involving other factors, including random noise, is represented by a right triangle; see APP.13 in the
Appendix, for the most general picture.

We will give detailed exposition and problems primarily (Chapters I through VIII) for linear
regression, meaning that Y is, on average, a linear function of X. That is, the expected value of Y,
denoted E(Y), equals

Bo + Bz,
for some fixed numbers 3y and f;.

The line
y=Lo+ bz
is then called the true or population regression line (see Definition 1.2); this terminology, in particular
the use of the depressing-sounding word “regression,” will be explained in 1.5.

We will perform statistical inference (meaning both confidence intervals and hypothesis tests,
as in [5]) on both 3y and 3, the y-intercept and slope, respectively, of the true regression line, in
Chapters VI and VIL. A third parameter, the variance of Y, denoted o2, will also be of interest,
giving us a clue about how close Y is to its true regression line.

Statistical inference on a parameter begins with an estimator of said parameter. For the pa-
rameters 3y, 31, and o2 of linear regression, the choice of estimator is much more challenging and
surprising than the choice of estimators for population mean and proportion, as in [5]. See 3.1 and
4.5.

The data for regression is sets of ordered pairs (z,y), that is, sets of points in the Cartesian
plane, corresponding to X and Y being measured in pairs. For linear regression we will estimate
the true regression line, hence both 3 and 3; simultaneously, by choosing the line

y=[o+ bz
that is “closest” to the data. This closest line will be called the estimated regression line or least-
squares line for the data.




The meaning of “closest” and “least squares” will be made clear in Definitions 2.3.

The numbers ﬁo and 31, calculated from the data, will be least-squares estimators of 3y and 3,
respectively. )

Regarding any set of points in the Cartesian plane, we will introduce in Chapter V a number
denoted r, the sample correlation coefficient, that measures how close said set of points is to a line.
In linear regression, r will measure the proportion of Y’s activity that is due to activity of X that
is transmitted to Y with the (true) regression lines.

The formulas needed for linear regression are summarized in Chapter VIIL.

Chapter IX will give an overview of how the same ideas for linear regression may be applied to
other polynomial regression and ANOVA.

Besides our usual favorite algebra reference [8], we assume the reader has read [5], or a similar
introductory exposition of probability and statistics.

For those who would like to see proofs of the results in Chapters I through IX, we have an
extensive Appendix between Chapter IX and the Homework. The Appendix requires some knowledge
of linear algebra, although we sketch much of what is needed in the Appendix.

We will adopt the following convention in this Magnification. Any number coming from a
probability table will be stated as being equal to the number we want, even though it is almost
always only an approximation.

We also follow the usual custom of upper-case letters being random variables, lower-case letters
being measurements of a random variable; e.g., a measurement of the random variable X is denoted
z and a sequence of n measurements of X might be denoted 4,k =1,2,3,...z,.




Chapter I. Simple Linear Regression Model.

Definition 1.1. Bivariate data is measurements {(, yx)}x of two random variables X and Y in
pairs. For example, for each fixed k, zjx and y; might be measured at the same time, or at the same
place.

In practice, the values of z; are easy to measure, control, or predict or are specified in advance,
while Y is what we care about. Our goal is then to use X to get information about Y.

Here are some examples.

X might be baldness and Y might be irritability; more specifically, for 1 < k < n, z% could be the
baldness of the k*" person, yj the irritability of the kt* person.

X could be water for irrigation, Y could be future crop yield.

X could be cicada chirp volume, Y temperature; using X to predict Y would be bug-based meteo-
rology.

The measurement z; could be electricity use last year in the kt* house (1 <k <n), yr the same
thing this year.

X could be length of stride, ¥ height (popular with Sherlock Holmes when measuring distance
between successive footprints).

X could be age, Y weight.
X could be expected high temperature for the day, ¥ could be ice cream sales on said day.

X is called the predictor, or explanatory, or independent variable, Y the dependent or
response variable.

We are interested, in Chapters I through VIII of this Magnification, in the simplest relationship
between random variables X and Y, hence between their measurements z and y in our bivariate
data, a linear relationship. In a world without randomness or uncertainty, hence without statistics,
this would have the form

y= BO =+ ﬂlx )
for some fixed numbers 3y and ;. The lack of randomness in this model earns it the description of
deterministic.

Y
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In practice, this linear relationship is confused by random errors in measurement or by the
presence of other variables besides z that affect Y. Here is the most popular probablhstlc version of
a linear relationship between z and Y

Definition 1.2. Given fixed numbers [, 41, and o, the Simple Linear Regression Model is
Y =060+ Sz +E.

x will be specified measurements and £ is a normal random variable with mean E(£) = 0 and
variance V(€) = 02, hence standard deviation o.

The random variable £ or its measurements ¢ is called random error, random deviation,
or noise. Note that, for each fixed z, Y is also a normal random variable, with variance o2 and
expectation

E(Y) = Bo + frz.
The line y = o + f1z is called the true or population regression line.

Arguably Y should be written Y|z, or in some fashion its dependence on z should be made
clear, but we will usually use the customary simplification of just Y.

Example 1.3. Suppose
Y=-2+43z+¢,

for some £ as in Definition 1.2, and we measure the following set of ordered pairs (z,y): {(0,—1), (1,0), (3, 5)}.

On the next page we draw the true regression line y = —2 + 3z, along with the values of
e=y—(—2+3z)
that distort our line.

First let’s organize our data:

z 0 1 3
y -1 0 5
(—2+3z) -2 1 7
€ 1 -1 -2

We draw the true regression line y = —2 + 3z in red, with large black dots for the measured

ordered pairs (z,y), and black brackets for e = y — (—2 + 3z), taking us vertically from the red line
to the black dots.




¢




In general, think of our measured ordered pairs (z,y) as beginning with a straight line, then
getting “fuzzed” by e, which attaches a bell curve to each point on the line.




The larger o2, the

variance of £ is, the more fuzzing is likely.
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Examples 1.4. Suppose weight, in pounds, denoted Y, is related to age, in years after birth,
denoted x, by the Simple Linear Regression Model

Y=T7T4+9z+€&.

Notice that there need to be restrictions on z, to make this model believable. The independent
variable z must be positive, and probably less than or equal to about 12.

The true regression line Y = 7+ 9z is saying that, on average, a newborn weighs 7 pounds, and
children gain 9 pounds per year.

(a) What is the expected weight of a five-year-old child?
(b) How much do you expect weight to change in three years?

(c) Suppose the standard deviation o of £ is twelve. What’s the probability that an eight year old
weighs more than 100 pounds?
Answers. (a) Thisis E(Y|z =5) =7+ 9 x 5 = 52 pounds.

(b) Since expected weight gain per year is 9 pounds, we expect 3 x 9 = 27 pounds of weight change
in three years.

(c) Abbreviating Y for (Y |z = 8), since Y is normal we change Y to the standard normal Z:
P(Y>100)=P<Z>1OO+E(Y)> :P(Z> 100‘(1;9"8)) =p<z> 2015_79)

= P(Z > 1.75) = 0.0401,
from the Z tables at the end of this Magnification.

Terminology Remarks 1.5. The term “regression” in Definition 1.2 is due to Francis Galton
in the late 1800s. He considered bivariate data as in Definition 1.1, with X a father’s height, Y
the son’s height. He noticed that |y — y| < |z — Z|, on average; this is regression to the mean as
generations pass. Informally, tall fathers have tall sons, but not as tall, on average.

See [9, Chapter 8] or [7, Chapter 16], for extensive discussion of the origins of regression.

The “simple” in Definition 1.2 refers to there being only one independent variable.




Chapter II. Assumptions, Goals, and Terminology.

Assumptions 2.1. For Chapters II-VIII of this Magnification, the set of ordered pairs

{(xk’ yk) I k=1,2,3,.. '*n} = {(Ilv yl)v (.’132,y2), oo o (@ yn)}

will be bivariate data as in Definition 1.1, with Y and z satisfying the Simple Linear Regression
Model in Definition 1.2.

Goals 2.2. We wish to perform statistical inference on the parameters 3y, 31, and o2, from Definition
1.2. This begins with choosing estimators (see [3, Definitions 19]) of said parameters.

The choice of an estimator for a parameter sometimes seems obvious or inevitable; for example,
estimating the population mean with the sample mean or the population proportion with the sample
proportion (see [3, Definitions 6]). Estimators for the parameters in Definition 1.2 are not so clear.

The estimator for 02 we will introduce later (Definition 4.5). Choosing estimators, call them £,
and 3, of By and f3;, respectively, is equivalent to choosing a line

y=fo+ bz
in the (z,y) plane that approximates the true population regression line y = 8y + 31z of Definition
152

We want the line y = §y + 1z that is “closest” to the bivariate data of Assumptions 2.1. That
word “closest” really needs quotation marks, because there are so many things it could mean.

For example, in the drawing below of two lines, in red, and bivariate data, represented by black
dots, which of the two lines is “closest” to the dots? The question is rhetorical, until we define
“closeness,” of a set of dots to a line.

3
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The measure of “closeness” that works out the best, for linear algebra and Pythagorean theorem
reasons (the reader familiar with vectors should see Theorems APP.10 and APP. 11 in the Appendix),
is sum of squares of vertical displacements.

Definitions 2.3. The least-squares estlmators of By and B; in the Simple Linear Regression
Model Definition 1.2, denoted ﬁo and [31 respectively, is the pair of numbers whose corresponding
line y = Bo + 1z minimizes the sum of squares of vertical displacements

n

SSV (bo,b1) = 3 [yk — (bo + brzs)]
k=1

from the bivariate data to the line (see the drawing below); that is,
SSV(BCH Bl) S SSV(b07 bl)

for all real numbers bg, b;.

The initials SSV stand for “Sum of Squares of Vertical” (displacements). That minimum value

SS V(,Bo ﬁl) is given a special name: SSE, for “Sum of Squares of Errors,” or “error sum of squares,”
in Definitions 4.2.

The line y = Gy + Sz is then the least-squares line or estimated regression line for the
bivariate data of 2.1.

" Vertica
e

d‘wtﬂ&\ccmeﬁt
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Examples 2.4. (a) For the bivariate data
{(z1,91) =(0,2), (z2,42) = (1, 1), (3,33) = (3,0)}

how close is the line y = 3 — 2z, measured by the sum of the squares of vertical displacements from
the bivariate data to the line, as in 2.3? That is, what is SSV (3, —2) (see Definitions 2.3)?

Answer. Let’s calculate SSV(3,—2), from 2.3:
[y1 — (3 — 221)]*+[y2 — (3 — 222)]*+{ys — (3 — 223)]* = [2 — (3 — 2 x O)]*+[(—1) — (3—2 x 1)*+[0 — (3 — 2 x 3)]2
=[2-32+[(-1) =12+ [0 (-3))> = (-1)2 + (-2)2 + 32 = 14.

~

Q\\__C




12

(b) Same question as (a), for y = 2 — .

Answer. As with (a), calculate
SSV(2,-1)=[2— 2P +[(-1) -1+ [0 — (-1)]2 =02 + (-2)2 + 12 = 5.

Since 5 is less than 14, the line y = 2 — z is closer to the data then the line y = 3 — 2z, as measured
using Definitions 2.3.
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Terminology 2.5. Formulas for these estimators 3, and 1, not to mention future statistical
inference on said estimators, are most easily described using the following terminology.

For any pair of ordered n-tuples @ = (wy, wo,...,w,),Z = (21,22, .., 2n), define
n
Soz=) (wp —W)(zk — 7);
k=1

recall from (3, Definitions 6] that the sample means W and Z are

| 1 =
EE—Zwk and EE—sz.
gt e

Remark 2.6. The dubious (this is usually a good attribute) reader might be asking why we have
squaring in Definitions 2.3; that is, why not minimize

n
D |k — (bo + baz)] |,
k=1
the sum of vertical distances from the bivariate data to the line?
One could ask a similar question about descriptive statistics; given data z1,z2,...z,, why do
people usually work with sample variance, involving
n
Z(-’Ek - f)27
k=1
instead of absolute deviation, involving
n
Z |:I:k = T|?
k=1

We can’t help but mention here a Gary Larson “Far Side” cartoon involving E = mc? versus
E =mc3, E = mc*, etc.; note that the desired exponent is “2.”

A very indirect clue for our predilection for squaring is the Pythagorean theorem: the sum of
the lengths of the sides does not equal the length of the hypotenuse, but the sum of the squares of
the lengths of the sides equals the square of the length of the hypotenuse.

Stated very informally, dealing with squares instead of absolute values often gives us a notion
of being perpendicular, which gives us an intuitive way to minimize things we don’t like. See APP.9
and APP.10 in the Appendix, (1], [2, 6.14, page 412], and the drawing below, where the large dot is
a person whose feet are burning on hot sand (with wriggly red lines rising above it), who wants to
reach the ocean by as short a path as possible..
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Chapter III. Calculating Least-Squares Estimators and Lines

Here is how we will calculate the least-squares estimators 3, and 3, from Definitions 2.3.

Theorem 3.1. 3 = 22 and fy =7 — Zh:.

iz-‘

Proof: For those readers familiar with vectors, see Examples APP.12(a). a

Corollary 3.2. The estimated regression line, also known as least-squares line, for the data in
Assumptions 2.1 is

Sy

Sz,

1

y:<y-fﬁl)+élz=y+é1($—f), where [ =

Hl

Before we do an example, here is a convenient formula for S,z in Terminology 2.5.

Proposition 3.3 (“computational formula”).

Proof:

= (Z wkzk) = ((w) Zk) = ((E)Zwk) + (n(w)(2))
k=1 k=1 k=1
= (Z wka) — (@)(n2) - (2)(n®) + n(D)(2) = (Z wkzk) —n(w)(z)

- (Ze) (i“*) ()

Example 3.4. Find the least-squares line for the data

{(0,2), (3,0), (2,6), (3, —2)}.

We recommend setting up the following table.

k Tk Yk fv_% TkYk
1 0 2 0 0

2 3 0 9 0

3 2 6 4 12
4 3 —2 9 —6

oo
(=]
N
(=]

sumy = Zz=1
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Everything we need is in that final row of sums:

Seg =D TkUk - %(sz)(z Yk) =6 — %(8)(6) = —6;
k k ™

N 2_99_ligz_g.
Szz=D i~ —(Q_z)?=22- (87 =6;

k k
1 8 1 6
T n(zk:mk) 1=2% 7 n(zk:yk) 1 5,
thus s 6
A
ﬁl_S",f 6 11
and

~

Bo=TF—Tb1 =1.5—2(—1) = 3.5,
so that the equation of our least-squares line is

y=35—=z.

Example 3.5. I believe that the number of decades a bridge lasts, as a function of the average
temperature in degrees Celsius during construction, satisfies the Simple Linear Regression Model.
Writing y for the number of decades a bridge lasts and x for the temperature in degrees Celsius
during construction, I collect data on 20 bridges

(mh yl)s (:1"2’ y2)v weey ($20, y20)a
and get the following summaries:

Sowi=-2 Y a2=5 3 y=30, Y ¥=57, 3 ay =3
i i J g :

Get the least-squares estimators of 3y and £, in the Simple Linear Regression Model, and the least
squares line or estimated regression line.

Answer. Using Proposition 3.3,

Si,g}' = Zxkyk - %(Z wk)(z Yk) =3 — %(_2)(30) = 6;
k k k

1 1
2 2= 2—— 2: _ —(— 2: i
Sz z Ek Ty n(Ek Tk) 5 20( 2) 4.8
We also need
g2 ——1—(30)—15 and T—l Tp = 1(—2)——01
y—nEk yk—20 =1 _nzk %7 oo A

Now, by Theorem 3.1, we have
N 6
A B = 18- 1.25,
Bo =1.5 —(—0.1)(1.25) = 1.625,
so our estimated regression line is
y = 1.625 + (1.25)z.
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Chapter IV. More Alphabet Soup

The strings of letters and numbers SSV (Definitions 2.3) and Sz > (Terminology 2.5) are already
pretty soupy. To discuss the value of our least-squares line

y=30+ﬁ1$s

defined in 2.3 and calculated in Chapter III, and perform statistical inference on the parameters
associated with said line, we need more terminology.

Definitions 4.1. The fitted or predicted values are

Y = o+ bz =T+ Bi(zk —F) (k=1,2,...,n),

the y values we obtain when plugging the specified z values into our least-squares line; see Assump-
tions 2.1 and Corollary 3.2.

We should worry about how close g, is to the measured value of 3, when z = in 2.3.
For k =1,2,...,n, define the k** residual

ek = (Yr — Yk);

| this is the vertical displacement of the ordered pair (zx,yx) from the least-squares line, as in 2.3:
} the Greek letter € stands for “error.”

§
7

Least -

gc\\)&\‘{/}

)ML
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Definitions 4.2. To describe the relationship of our least-squares line to the bivariate data of 2.1,
in particular, its ability to explain the variability of yx, k = 1,2,3,...,n, define the total sum of
squares =

n
SST = Z(yk —7)? ~ “observed variation in y”,
k=1
the regression sum of squares

n
SSR = Z(jk —7)? ~ “observed variation in y explained by z and the linear model”,
k=1
and the error sum of squares

n

n
SSE = Z(yk —2i)? = Z € ~ “observed variation in y not explained by z and the linear model”,
k=1 k=1

Note that SSE = SSV(BO,,él), from Definitions 2.3.

To get a very helpful and suggestive picture of all these sums of squares, put together our data
and our fitted values into ordered n-tuples

gz(yl)y%""yn)v gE(ﬁlﬁﬁZ)--"yn)v and giz(yvy!,g)v

our sums of squares are then seen as length squared of arrows (known as vectors; see the Appendix,
especially Definitions APP.1) from one of the n tuples just defined to another, in the right triangle
below.

Regression Picture 4.3. The right-angle symbol in the picture below may be taken as metaphor-
ical for now; APP.4 in the Appendix defines two vectors being perpendicular, in possibly more than
two dimensions.

If we accept the picture below, then a Pythagorean theorem (see APP.5 in the Appendix)
suggests that SST = SSR + SSE. We will sharpen this result, and Picture 4.3, in the next chapter.

__3

5T :
SSE

—l

ISR

Example 4.4. Let’s get SST, SSR, and SSE for the data in Example 3.4.

Put four more columns on the table we constructed in Example 3.4 and use the fact, from 3.4
calculations, that 7 = 1.5.
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k Tk Y Tp TkYk Yi Yk=(35—zk) (Gk—7) e = (yk— Jk)

Rl T S —

1 0 2 0 0 4 3.5 2 ~15
2 3 09 0 0 0.5 -1 —0.5
3 2 6 4 12 36 1.5 0 4.5
4 3 -2 9 -6 4 0.5 -1 -2.5

sump =35, 8 6 22 6 44 6 0 0

Note that the fitted values yj are in the seventh column and the residuals e are in the ninth
(last) column.

Staring at the sums in the table gives us

1 1
SST =Sp5= wi— ;(2 yk)? =44 — Z(6)2 = 35;
k k

SSR=Y (k-9 =22 + (1) + 0% + (-1)? = 6;
k=1
and N
SSE =Y (yk — 4)? = (—1.5)2 + (—0.5)2 + (4.5)% + (=2.5)? = 29.
k=1

Please note that SSR+ SSE = 6+29 = 35 = SST. Note also that each of the last two columns
add up to zero.

We will redo Example 4.4 in an easier way (see Example 5.5), using correlation (Definition 5.1).

Definition 4.5. We are now in a position to define our favorite estimator of ¢ from the Simple
Linear Regression Model 1.2:

SSE
(n—2)

S=0

In the previous Example 4.4, s, the preferred estimator of o, equals ;12_9—2 = v14.5.

As an informal rationale for s, notice that both o2 and SSE are measuring the deviation from
the desired linear model; see the drawings in Example 1.3 just before Examples 1.4 for o2 and
Regression Picture 4.3 for SSE.

For the division by (n — 2) in the definition of

o SSE
- (n-2)

we can only make vague statements about free variables (also known as dimension in linear algebra)
in 4.2 and 4.3: SSR has 2 free variables, the numbers by and b; in the linear model, while SST has
n free variables, in the raw data yi,ys, ..., yn, leaving (n — 2) free variables for SSE.

It is also the case that E(s?), the expected value of s2, is o2, the parameter s? is meant to esti-
mate. This highly desirable property of an estimator—having expected value equal to the parameter
being estimated—is called being unbiased.
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Example 4.6. Suppose we do regression on data

{(1,5),(0,2), (1,4), 0,2), (3,0)}.

and get an estimated regression line of y = 3.27 — (0.667)z.

(a) Get the fitted values (for z = 0,1, 3).

(b) Get the (five) residuals.

(c) Get SSE.

(d) Get s?, our favorite estimator of g2, in the Simple Linear Regression Model.

Answers. (a) Plugging z into the estimated regression line and writing “fit” for “fitted value”:

T 0 1 3
fit (3.27-0.667 x 0) (3.27—0.667x 1) (3.27 — 0.667 x 3)
or
T 0 1 3
fit 3.27 2.603 1.269
Denoting

(xla yl) = (17 5)) ($21 y2) = (Oa 2)1 ("ES’ y3) = (11 4)7 ($47 y4) = (Oa 2)7 (w57 ?/5) = (39 0)7
these are fitted values

41 = 2.603, g2 = 3.27, 93 = 2.603, s = 3.27, ¥s = 1.269.

(b)

1= (y1—%1) = (5-2.603) = 2.397, &2 = (y2—t2) = (2—3.27) = —1.27, €3 = (ys—7ja) = (4—2.603) = 1.397,
€4 = (ya— %) = (2—3.27) = —1.27, 5 = (y5 — gi5) = (0 — 1.269) = —1.269.

(c) SSE equals

5

D (er)? = (2.397)2 + (—1.27)% + (1.397)% + (—1.27)2 + (—1.269)2 ~ 12.533.
k=1

) 1 1

ook = )] [(2:397)? + (-1.27)% + (1.397)% + (—1.27)% + (~1.269)%] ~ 4.178.
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Chapter V. Correlation

The quantities SSE and SSR, introduced in Definitions 4.2 and illustrated in Regression Picture
4.3, represent our first attempt to describe how well our least-squares line

y=fo+ bz
fits the bivariate data in 2.1. Our intuition is that large SSR means a good fit, while large SSE
means a poor fit.

Our objection to this first attempt is that measurement techniques can artificially change both
SSE and SSR. For example, they are unstable under changes of units, e.g., changing dollars to
cents would multiply all data by 100.

To standardize, we could divide both SSE and SSR by SST. This turns out to be something
surprisingly simple and of great independent interest; see Theorem 5.3.

Definitions 5.1. The sample correlation coefficient for bivariate data as in 2.1 is

2

r© is called the coefficient of determination.

When r appears, we will assume both Sz z and Sy, are nonzero.

Example 5.2. Get the sample correlation coefficient and coefficient of determination for the data
{(—1, 3)» (0’ 1)’ (2v 0)}
Answer. We like to organize:

k Tk Yk TR YR TkYk

e e S —

1 -1 3 1 9 -3

2 0 1 0 1 0

3 2 0 4 0 O

k
1 ’ 1 14
Sg.g = Zyi - (Zm) =10- -(4)* = 3
k k
1 1 13
Szg=)  Thyk — = (Zwk) ( yk) =-3-3()@)=—,
k k k
so that :
r=—3__ = —3 ~ —0.929
(B35
and
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The fact that |r|, hence r2, is close to 1 reflects the fact that our data, drawn below, is very close
to a straight line. Notice also that the y values of the data decrease as the z values increase. This
is equivalent to r being negative, which in turn is equivalent to the slope 3; of the least-squares line
being negative (see 5.8 and 5.9).

} Ll

L ad
+-
——

Theorem 5.3. (a) SST = S; 7,

(b) SSR = %Sy 7, and

(c) SSE = (1 —1%)Sz 4.

Proof: (a) is merely Terminology 2.5 and Definitions 4.2.

Both (b) and (c) require some calculation, using Terminology 2.5, Theorem 3.1, Corollary 3.2,
and Definitions 4.1 and 4.2.

SSR = Z(:‘fk -9 = Z ((?+31(zk —-7T)) -5)2 = Z(Bl(wk -7))? = () 22 (zk — 7)?
B k

Ed
Ead

giving us (b).

S5 = S (uk — )" = 3 (e~ + (o 7)) = (ke — 9 - ok - 2)?

3 k
= Z v —0)° =261 _(vk — )@k — T) + By Z(Ik —%)® = S.7— 2615z.5 + B Sz.z
k k
) )2 L2
= Sz.9—2 Sz,g ”) = Syg— (Sz.9)” _ Sg.5— (Sz9) Sg.g = (1-1r*)Sz 4= (1-r2)SST,
Szz Szz " 1Sz#S79] ’
giving us (c). a

In words, Theorem 5.3 is saying that r? = ‘§§¥ measures the proportion of the observed variation

in y explained by z and the linear model while (1-72) = ‘ggi measures the proportion of the observed
variation in y not explained by z and the linear model

Compare this to SSR and SSE in Definitions 4.2.
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Regression Picture 5.4. Here is a refinement of Picture 4.3, with 72 inserted.

'i

gsT =5,
3} §§£ = (I- Y‘q') 6.39

SSR = I*5); ¢

Example 5.5. Let’s redo Example 4.4 using the sample correlation coefficient r.

k Tk Yk T TkYk Vi
1 0 2 0 0 4
2 3 0 9 0 0
3 2 6 4 12 36
4 3 -2 9 -6 4
sump =35, 8 6 22 6 44

As in Examples 3.4 and 4.4,
Sj',g' = —6, Si',z‘ =z 6, and Sg,g =35,

thus
—6 6 2 36 6

J6x35 o210 | 210 35

By Theorem 5.3,

L x35=6and SSE = (1 —1?)Sz5= (1 — %)35 = 29.

SST = Syg =35, SSR =125y, =

Terminology 5.6. “How good a job is simple linear regression doing explaining the variation of y
in the data in Examples 3.47”

This sort of goodness is measured by r or r2; our answer to the quoted question could be “The

coefficient of determination is %.”

For those who prefer subjective social fuzziness to explicit quantification, the answer to our
question might be “Bad job, since 2 is too small.”
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Example 5.7. For the data in Example 3.5:

(a) Get r2, the coefficient of determination, measuring the proportion of observed variation in the
number of decades a bridge lasts that can be explained by its linear relationship with the temperature
during construction.

(b) Get the sample correlation coefficient.
(c) Get SST, SSE, and SSR.
(d) Get s%, our favorite estimator of o2, and s, our favorite estimator of o, in Definition 1.2.

Answers. We need, in addition to the calculations in 3.5,

1 1
Sgg =D vk — (D w)® =57~ 55(30)° = 12.
K p

(a) By Definitions 5.1,
62
2 = e s i .
e = @8)(12) 0.625

(b)
r = v0.625 ~ 0.791.

(c) SST = Sz 3 =12,SSE = (1-r?)Sz 57 = (1-0.625)(12) = 4.5, SSR = r2S; 7 = (0.625)(12) = 7.5.
(We could have saved work by subtracting 4.5 from 12.)

(d) See Definition 4.5.

SSE 45

2

= =22 _ 0.2,
T o2 1 2

s =+v0.25 = 0.5.

thus

Proposition 5.8: Some Properties of the Sample Correlation Coefficient.
(a) -1<r<1.

(b) r =+1 <= bivariate data is on a straight line.
() 1 =0 < r=0.
(d) B >0 < r>0.

(e) /L <0 < r<0.

Proof: Parts (c), (d), and (e) follow from the fact, that we leave to the reader to calculate, that

S5
Szz

1

Pr=r

Part (a) is a special case of what is known in linear algebra as the Cauchy inequality; see (2,
6.26, page 428], using the terminology dot product (APP.4 in the Appendix of this Magnification)
and norm (APP.1 in the Appendix of this Magnification).
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For part (b), first suppose r = £1. By Theorem 5.3, we then have

n

> (k — 4k)? = SSE =0.
k=1

Since each term in the sum just stated is nonnegative, each term must be zero; that is,

Ye =Yk, k=1,2,3,...,n,

so that {(zk,yx) |k = 1,2,3,...,n} = {(zk,¥k) | k = 1,2,3,...,n}, which lies on the least-squares

line y = By + frz.

Conversely, suppose the bivariate data lies on a line y = by + b1z, for some real by and b;. Then,

fork=1,2,3,...,n, since
=137 C LIS tim] = L Lok 03 | o b
#¥=g Uk = Zo 1Zk) e 1Z$k = 0p + 017,
k=1 k=1 k=1
we have
(yk —7) = ((bo + brzx) — (bo + b17)) = by (zx — T),
thus
n n
Sz = Z(xk —Z)(ye —Y) =b Z(xk -2 =b15z 7
k=1 k=1
and
n n
Sgg=) (wk—7)° =61 (zx —7)* = b3Sz,
k=1 k=1
thus 2
oo (829 (01822’
(Sz:2)(Sy.y)  (Sz2)b3(Szz)
so that r = +1.

a

Correlation Pictures and Discussion 5.9. The proof of Proposition 5.8(b) implies that, as 7|
gets close to one, (yx — yi) should get close to zero, for k = 1,2,...,n. In some sense, this is saying
that the graph of the bivariate data, called a scatterplot, is getting close to a straight line, just as

|r| =1 implies that the scatterplot will be exactly a straight line.

The next page presents some scatterplots, with information about r from Proposition 5.8 at-

tached.
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We should mention that the intuition of the previous page is not foolproof. Consider the following
two sets of bivariate data, each containing only three ordered pairs.

Examples 5.10.(a) For arbitrary nonzero ¢, let our bivariate data be
{(-1,0),(0,3¢), (1,0)}.
We leave it to the reader to calculate (Proposition 3.3)
Szg=0, Syg=06€, Szz=2.
Then (see Theorem 3.1) [51 =0 and ﬁo = €, thus our least-squares line is
Yy =e€.
More calculation shows that r = 0 = SSR and SST = SSE = 6¢2.

Despite r being 0, the scatterplot below (with least-squares line drawn in red) looks arbitrarily
close to a straight (horizontal) line as || gets smaller.

HG

v-2 €

(b) Having 7 = 0 is pathological (see Definition 6.4, Proposition 5.8(c) and Remark 6.7), so let’s
have an example with nonzero 7.

For arbitrary nonzero e, let our bivariate data be

{(=3,0),(1,3¢),(2,0)}.
Again we leave it to the reader to calculate
3e

Sf,g — 36, Sﬁ,g = 662, Sf,f —— 14, B‘l = 1—

7 and ﬁoze,

thus our least-squares line is

3 3
y:e+(i)x:e[l+ﬁz].

We further leave it to the reader to calculate that r equals 7%3 if € > 0 and r equals —738-4 ife<O.

Below we have drawn a scatterplot, with the least-squares line drawn in red. As with (a), as |€]
gets close to zero, the scatterplot looks more like a straight line, yet |r| does not get close to one, in
fact, |r| does not change as e changes.
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Chapter VI. Inference on (3, the slope of the true regression line

Assume, throughout this and the next chapter, that we are under the Simple Linear Regression
Model Definition 1.2. It is time to discuss confidence intervals and hypothesis tests, involving the
parameter 3; see Definition 1.2.

Recent History 6.1. To motivate our activities, let’s quickly summarize such inferences for a
simpler parameter, the population mean, denoted u; see [5].

For X a normal random variable with (unknown) mean p, our estimator is much less mysterious
than the subject of this magnification: we estimate the population mean u with the sample mean
n=X.

If the population standard deviation, call it ox, is known, then, denoting by n the sample size,

X —p

ox
vn

is an excellent choice for a test statistic, since it has a standard normal, denoted Z , distribution.

In practice, we do not know what ox is, thus we must estimate it with the sample standard
deviation, denoted Sx; see [5, Definitions 1.1]. Then our natural test statistic is

For n < 40, our estimator (*) no longer has a Z distribution. Said estimator has what is called a
t distribution, with (n — 1) degrees of freedom, or t,_1 distribution. A random variable with this
distribution is denoted T,_; or sometimes T for short; measurements of said random variable are
denoted t,,_1 or ¢t for short.

See [5, especially 1.7-1.11] for needed properties of ¢ distributions.
Our choice (*) of test statistic drives both hypothesis testing and confidence intervals.

For the null hypothesis
Ho : p = po,
we use the test statistic 2522, to either calculate P-values or to get critical values for rejection

n

regions.

Our (1 — @)100% confidence intervals for u are

= SX
e ()
formed by setting (*) between —tg (,_1) and ta (n—1)-
Note that the confidence interval has three ingredients: reading from left to right, these are the
estimate T, the critical value tg (n—1) and the estimated standard error for X, (%)

Analogies 6.2. Recall (Theorem 3.1) that our estimator of /3 is

b=

&P

<y

)

z'l

95)

8B

It can be shown that the expected value of 3 is 3;; that is, 3, is an unbiased estimator.

It can also be shown that the standard deviation of 31 is g_ =, where o is from the Simple

Linear Regression Model Definition 1.2. The normality of our model now implies that

(61 — Br)
;f,f
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has a Z distribution.

As with inference on p, it is not realistic to assume knowledge of o, thus we replace it with our
favorite estimator (see Definitions 4.5),

g SSE
 {(m=2y
giving us the estimated standard error for 3,
s

hence, analogously to (*) in 6.1, our favorite test statistic for 3; is

Br-p) _Bi-8) ,,

56, o

This turns out to have a t,,_» distribution.

As with inference on y, the test statistic dictates both hypothesis testing and confidence intervals.

(1) For testing the null hypothesis
Hy : 1 = (B1)o,
we use the test statistic R
7= (81— (B1)o)
54
with a ¢,_2 distribution, to get P-values or critical values for rejection regions, as in [5].

b

(2) Our (1 — @)100% confidence interval for 3; is

B+ (tg (n-2))34,-

Notice that we again have, from left to right, estimate, critical value and estimated standard error.

Example 6.3. Here is some bivariate data, for the Simple Linear Regression Model Definition 1.2.

z 01 2 4 5
y 4 200 -1
(a) Get a 95% confidence interval for 3.

Answer. We need Sz ; and Sz 7 for B}. For S5,, we need SSE = (1 — 7'2)537‘5 (Theorem 5.3).
Using the computational formula Proposition 3.3, we need

Doz =12,y =5 af =46,y v7 =2l,and Yz = (-3),
k k k k k

to obtain
1 1 1
Szz =46 — 5(12)2 =172, Syg=21- 5(5)2 =16, Szgz=(-3)— £(12)(5) = -15,
giving us
B = Szg _ 15 L _osr2,r2= & ~ 0.818,SSE ~ (1 —0.818)16 ~ 2.92
1= e 172 R ' ‘
and
SSE 2.92 s 0.97
2
= ~ ~ U. ;3 = ~y e 02 .
. n-2) (56-2) b, V/Szz 17.2 T
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We also need a critical value. Since (1 — ) = 0.95, % = 0.025. From the “Critical Values” table
near the end of this Magnification, prior to the References,
tg,n—2 = to.025,3 = 3.182,
so, following 6.2(2), our confidence interval is (approximately)
—0.872 + (3.182)(0.237) ~ —0.872 + 0.754 = (—1.626, —0.118).

(b) Test Hy: 31 = —1 versus H, : 3y > —1 at significance level a = 0.1.
Answer. Following 6.2(1) and using the calculations from (a), our numerical test statistic is
fi—(-1) —0.872—(-1)
85, 0.237
1

so that, from the “t Curve Tail Areas” table near the end of this Magnification, prior to the Refer-
ences,

t=

0.54,

P-value ~ P(T5 > 0.54) = 0.326 > 0.1 = o,
so that we don’t reject Ho; at significance level 0.1, the data does not support the slope of our true
regression line being more than (—1).

(c) Is there a “useful linear relationship” between x and y?

Answer. See Definition 6.4. Our question translates into the hypothesis test

Ho:pB1 =0 versus Hg,:[3; #0.
More precisely, an answer of “yes” to the question in (c) is equivalent to rejecting Hy.
We need a P-value. Our numerical test statistic is now
_B—0 0872

t ~ ~
sg,  0.237

—3.68,

so that
P-value ~ P(T3 > 3.68) + P(T3 < —3.68) = 2P (T3 > 3.68) ~ 2P(T3 > 3.7) = 2(0.017) = 0.034.

Since no significance level a is given, we should choose one of the two arbitrarily popular signif-
icance levels, a = 0.01 or a = 0.05.

Since P-value ~ 0.034 < 0.05, we reject (at significance level 0.05) Hy; at significance level 0.05,
the data suggests there is a useful linear relationship between z and y.

Since P-value ~ 0.034 > 0.01, we don’t reject (at significance level 0.01) Hy; at significance level
0.01, the data does not suggest there is a useful linear relationship between z and y.

It can be shown that the rejection of Hy at significance level 0.05 is equivalent to the fact that
our 95% confidence interval, from (a), does not contain 0. See [4, Theorem 5.2(c)].

Definition 6.4. A useful linear relationship between z and y satisfying the Simple Linear
Regression Model in Definition 1.2 means that 3; # 0.

“Useful” here means in terms of using z to predict y. If f; = 0, then our true regression line
y = Po + 1z becomes y = [, a horizontal line. This means the value of y is unaffected by the value
of z; knowing z no longer helps us to know .
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Example 6.5. See 3.5 and 5.7.
(a) Get a 99 percent confidence interval for f3;.

(b) Test, at significance level o = 0.05, whether there is a useful linear relationship between the
number of decades a bridge lasts, and the average temperature (during construction).

(c) Test, at significance level 0.05, the belief that increasing the temperature increases the lifetime
of bridges (on average).

(d) Test, at significance level 0.01, the claim that increasing the temperature by one degree increases
the lifetime of a bridge by more than 5 years, on average.

(e) Test, at significance level 0.01, the claim that increasing the temperature by one degree increases
the lifetime of a bridge by more than 8 years, on average.

Answers. (a) See 6.2(2). Setting (1 — a) = 0.99 gives us § = 0.005, so that

tg (n—2) = t0.005,18 = 2.878.
We also need

o s - 0.5
A Szz V48

so that our confidence interval is

B1 + 2.878(—0i

~1.25+0.66 = (0.59,1.91).
75 ( )

(b) This is (see 6.4) testing
Hy:p51=0 versus H,:5 #0
with test statistic

h -0 1.2
tzﬂl‘ =2 o hde,
56, Vis

with a ¢;g distribution, hence a P-value of ~
2P(T1s > 5.48) < 2P(T1s > 3.9) = 2(0.001) = 0.002 < 0.05 = a,
thus we reject Hp: the data, at significance level 0.05, suggests a useful linear relationship between
the average temperature and the number of decades a bridge lasts.
(c) This is (compare to (b)) testing
Hy: 31 =0 versus Hg: 1 > 0.
We have the same test statistic as in (b), but the P-value is now
P(T1g > 5.48) < P(Tys > 3.9) = 0.001 < 0.05 = a,

thus we reject Ho: the data, at significance level 0.05, suggests the belief that increasing the tem-
perature increases the lifetime of bridges (on average).
(d) This is

Hy: 31 =0.5 versus H, : 31 > 0.5.

Our test statistic becomes

B —0.5 0.75

56, V4.8

with a t1g distribution, hence a P-value of ~
P(T1s > 3.3) = 0.002 < 0.01 = ¢,

thus we reject Ho, and conclude that increasing the temperature by one degree increases the lifetime
of a bridge by more than 5 years, on average, at significance level 0.01.

t
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(e) This is
Hy: 51 =0.8 versus H,: 3; > 0.8.
Argue almost identically to (d):
Our test statistic becomes

3 —0.8 0.45
§ = P08 _ -5 ~ 2.0,
36, Vas

with a ¢;g distribution, hence a P-value of ~
P(T1g > 2.0) = 0.030 > 0.01 = a,

thus we don’t reject Hy, and conclude that, at significance level 0.01, there is insufficient evidence
to conclude that increasing the temperature by one degree increases the lifetime of a bridge by more
than 8 years, on average.

Remarks 6.6. The test statistic we have been using for

Ho:ﬁlzo is .;B—l,

which has a t,_» distribution.

Another approach is to square the test statistic just mentioned. We leave it to the reader to

show that
s S DR
R ~ SSE -
36, (n—2)
This test statistic has what is called an F distribution; the 1 and (n — 2) are degrees of freedom.
Notice that, in 4.3, said test statistic is the ratio of the lengths of the legs of the right triangle,

tempered by degrees of freedom. See Pictures 9.7 and, in the Appendix, APP.13, for more of this
picture. See also 9.10 for other examples of where the F' distribution appears.

Remark 6.7. For any bivariate data as in Assumptions 2.1 with 3; = 0, said data will not suggest
a useful linear relationship between z and y, at any significance level, since the test statistic for

Ho:,Bl =0 versus Hatﬁl#o
is then R
_P-0_

56,

t 0,

so that our P-value is
2P(Tn_2 > O) =1,
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Chapter VII. Inference on [, and other y values of the true regression line

In the last chapter we performed inference, meaning confidence intervals and hypothesis tests,
on the parameter ; in the Simple Linear Regression Model Definition 1.2. In this section, we will
do the same with the parameter 3.

We can do much more, with no extra effort, by observing that

Bo = E(Y|z =0),
the expected value of Y when z = 0.

Definition 7.1. For any real z*, define the parameter
by 2= = (Bo + frz*) = E(Y|z = z¥),

the expected value of Y when z = z*. This is the y value of the point on the true regression line
when the z value is z*. See the drawing below, with the true regression line drawn in red.

¢
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It seems natural to use our estimators ,30 and ﬁl (see 2.3 and 3.1) to estimate py ...

Definitions 7.2. Our favorite estimator of py .- is
/]'th" = BO + ,BAI-T*;
this will often be abbreviated to Y.

It can be shown that Y is normal, with expected value E (f’) = My.p- and standard deviation
o4/ 1{- =+ %ﬁ
As with 6.2, we replace o with s (Definition 4.5) and define the estimated standard error for Y
to be
@~
Szz

Again as in 6.2, our favorite test statistic for gy .-,

Sy =84/ —+
& n

? — KUY -z
S}”, ’
has a t,_» distribution, leading to the following outline of inference on 1y .q-.

(1) For testing the null hypothesis

Ho : py.z+ = (1y .2+)o,
we use the test statistic R
7= &~ (Wyae)o)
Sy
with a t,_» distribution, to get P-values or critical values for rejection regions, as in [5].
(2) Our (1 — @)100% confidence interval for py .- is

Y+ (t%'(n_;;))sf,.

Example 7.3. We will use the data and calculations in Example 6.3.

(a) Get a 95% confidence interval for (8y + 3/3;).

Answer. We already (in 6.3) calculated 5, ~ —0.872. For 3y, we need y=1and 7 = 2.4, thus
Bo ~ 1 — (2.4)(—0.872) ~ 3.093.

Here z* = 3, so

Y = Bo+ 61(3) ~ 3.093 + (—0.872)(3) = 0.477
is our estimate of (Fy + 3/51).
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Next let’s get the estimated standard error

_ 1 @-z 1 (3-24)2
SY=S H+Tj_ 0.97 5+TN0463

Finally, we need the critical value
ts =10.0253 = 3.182,
from 6.3.
From 7.2(2) our (1 — &)100% confidence interval for py ..~ is

Y £ (tg,(n—2))Sy ~ 0.477 % (3.182)(0.463) ~ 0.477 = 1.473 = (—0.996, 1.950).

(b) Get a 95% confidence interval for (8y + (31).

Answer. This is the same as (a), except that z* = 1.
Now . . .
Y = B0+ £1(1) ~3.093 + (—0.872)(1) = 2.221
is our estimate of (By + (31).
We also modify
(1—2.4)2

T7a "~ 0.552,

Sf, ~y 0.97 % +
thus our confidence interval is ~
(2.221 £ (3.182)(0.552) ~ 2.221 +1.756 = (0.465, 3.997).

Notice that the confidence interval for (Gy+ /1) is wider than the confidence interval for (5434 ).

This is explained, at least technically, by the presence of (z* — 7)? in the expression for Sy
x* = 3 is closer to T = 2.4 than z* = 1, thus (z* — Z)? is smaller when z* = 3.

A more intuitive explanation for the widening of the confidence interval when z* is further away
from 7 is that, in a sense that can be made precise, z* is further away from the data (see APP.15 in
the Appendix), thus we have less information about quantities calculated from z*; loss of information
is equivalent to wider confidence intervals.

(c) Test the claim that (8y + 381) > 0, at significance level 0.05.

Answer. Our hypothesis test is
Hy: py.3 = (Bo+3p61) =0 versus Hy : py.3 = (o +361) > 0.

We follow 7.2(1) with z* = 3, uy.3 = 0, ¥ ~ 0.477 and sy ~ 0.463 already calculated. Our test
statistic is B
V-0 0477

t N ——
Sy 0.463

1.0,

thus our P-value is ~
P(T53 >1.0) =0.196 > 0.05 = a,

thus we do not reject Ho; at significance level 0.05, the data does not suggest (B + 3/3;) is greater
than 0.
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Example 7.4. See 3.5, 5.7, and 6.5.

(a) Get a 95 percent confidence interval for (8y + 3(31), the true average number of decades that a
bridge lasts at an average temperature (during construction) of 3 degrees Celsius.

(b) Test, at significance level a = 0.01, the hypothesis that (3y — 1), the true average number of
decades that a bridge lasts, at an average temperature (during construction) of (—1) degrees Celsius,
is less than 0.6.

Answer. (a) See 7.2(2). Here z* = 3 and T = —0.1. Our interval is

(Bo + $1(3)) + t0.025,18(3)\/% +B=CONP ) 6as 4 (1.25)(3) £ 2.101(0.5) 21—0 + (34'_18)2

Sz,z
~ 5.375 £ 1.505 = (3.87, 6.88).

(b) Our hypothesis test is
Hy: (Bo—B1) =0.6 versus Hgy: (8o — 1) < 0.6
with z* = —1. We have . . .
Y = (6o — 1) = 0.375
and (see 7.2(1))

0}
*
|

8l
N

1 1 (=1 —(-0.1))2
o = — 4+ ——=05{/ =4+ ———" ~0.234
Sy =38 n-l— Yax 0.5 204— 138 0.234,

so that our test statistic is

¥-0 375 —0.
;- Y-06 031506 o
sy 0.234

giving us a P-value of

P(Tis < —1.0) = P(T1s > 1.0) =0.165 > 0.01,
thus we don’t reject Ho; at significance level 0.01, the data does not suggest that the bridge lasts
(on average) less than six years, at an average temperature (during construction) of (—1) degrees.




36

Chapter VIII. Recommended formulas for simple linear regression

Terminology. For any pair of ordered n-tuples @ = (wq, wa, ..., w,), Z = (21, 20, .. ., 2, define
n 1 n 1 n
Sz r= wg —W)(2zx —Z), where wW=— wry and Z= — 2k-
w,Z ;( k )( k ) = ; k " kz_:l k

The “computational formula” is

n 1 n n
Sue=Ywma -1 (o) (Soa).
k=1 k=1 k=1
All formulas refer to Assumptions 2.1.

Sz
Sz z
The least-squares line or estimated regression line is

y="ho+bic =7+ (x—7)h.
For k =1,2,...,n, the fitted values are

¥k = Po+ Brzk =T+ (zx — T

B =

is the least-squares estimator of f3;, ﬂ]) = y—fﬁl is the least-squares estimator of f3.

and the kt" residual is

| €k = (Yk — Yk)-
|
The sample correlation coefficient is
Sz,
r=
Sz,#5 7,7

r? is the coefficient of determination.

SST = Sgg, SSE=) (v —tik)>=(1~-7r%)Ss3 SSR= > Gk —9)? =r2Sz5
k k

(Total, Error, and Regression Sum of Squares, respectively; see Regression Pictures 4.3 and
5.4)

Our favorite estimator of o is s =6 = , / (ffg).

The estimated standard error for 3 is

85, = i c <5ls_ ﬁl) has a t,,_o distribution.
b1

Sz,z

Denote, for z* a real number,
pyzr = E(Y|z=2*) =0+ fiz*, Y =jiy.er = fo + Biz”.

The estimated standard error for Y is

Y — py.ge .
S ==+ : ( spy z ) has a t,,_»o distribution.
Yy
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Chapter IX. Other model fitting

Example 9.1. Consider the bivariate data

{(-1,1),(0,0),(1,1)}.
We will leave it to the reader to calculate that 51 = 0 = r. This means we are not getting a good
linear fit to the data (see Definition 6.4, Proposition 5.8(c) and Remark 6.7).
Yet the data is very well behaved in terms of getting y as a function of z;
Yk = Tp,
for k'=1,2, 3,

10N
/ reqres*

—*’G“
®

/ line

This example suggests that, if we relax our standards in Definition 1.2 by allowing quadratic
rather than merely linear functions of z to equal the expected value of Y, we will increase our chances
of success.

Simple Quadratic Regression 9.2. It is not hard to modify Definitions 1.2 and 2.3 to include
quadratic functions y = by + byx + boz?, for by, by, bs real numbers.

A Simple Quadratic Regression Model (compare to Definition 1.2), for fixed numbers
Bo, B1, B2, and o is
Y=ﬂ0+,31l‘+,32.’1:2+5.
The values of z will be specified measurements and £ is a normal random variable with mean
E(€) = 0 and variance V(£) = o2, hence standard deviation o.
The expected value of Y is now

E(Y) = fo + b1z + Boz.

For estimators of 3y, 41, and [z, as in Definitions 2.3, we want ,30, ﬁl, ﬂz so that y = (ﬁg - ﬂlx -
Box? ) minimizes the sum of squares of vertical displacements

n

2
SSV (bo, b1,b2) = > [yk — (bo + brz + boz)]
k=1
from the bivariate data of Assumptions 2.1 to the parabola (see the drawing below Definitions 2.3
and replace the red line with a red parabola); that is,
SSV (Bo, b1, B2) < SSV (bo, by, b2)

for all real numbers bg, by, bs.

The parabola ) X )
Y = Bo + Bz + oz’
is then the least—squares parabola or estimated regression parabola for the bivariate data in
2.0 ﬁo 61, and ﬂz are least-squares estimators of 3y, 51, and 3, respectively.
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We do not wish to explicitly analogize Theorem 3.1 here, with direct formulas for Bo, 61, and
5. What we can analogize, without excessive pain, is the systems of equations whose solutions are
the desired least-squares estimators.

Here is an indirect algebraic sense in which our quadratlc least-squa.res estimators /60, [31, and
3, are analogous to our linear least-squares estimators 3y and 3.

It can be shown (the reader with knowledge of vectors as in the Append1x should see Examples
APP.12(a) and (b) in the Appendix) that the linear estimators [y, 31 are a solution of

nBo + kak)ﬁl = iUk

(Crz)bo + (Tpad)b = X, zavk
while the quadratic estimators 30, 51, Bg are a solution of
nfo + (k) 31 + Ok xk = k¥
(XK zk) 50 + Xk ‘Ek)ﬂl + (Ziz}) ﬂ2 = 2k TkUk
(X k )b+ Xk )/ + XCrzi)b = XpTiuk

Solving the system of three equations directly above would give us ﬁo, ﬁ], and ﬁg of 9.2.

Simple Polynomial Regression 9.3. In 9.2, for arbitrary N equal to 1,2, 3, ..., b, b1, ba, b3, ...,bn
arbitrary real numbers, replace (by + b1z + byz?) with (bo + b1z + boz?® + baz® + - - - + byazN ).

General Model 9.4. Let R" be the set of all ordered n-tuples of real numbers, also known as
vectors Z = (z1, 22, ..., 2n). Let W be a subspace (see Definition APP.7 in the Appendix) of R™ that
contains the n-tuple (1,1,...,1) consisting entirely of 1s (denoted I in Definitions 4.2).

Given data organized as a vector ¥ = (y1,y2,...,yn) as in 4.3, let § = (41,7, .. .Yn) be the
vector in W that minimizes, over Z'in W,

n
SSV(2) =) (uk — )%
k=1
that is, ¢ is in W and
SSV(9) < SSV(2),
for all # in W. In words, 7 is the best (least-squares) approximation of 7 from W. W is the model
that we are trying to fit the data to; it’s where the data “should” be, in some idealized world.

In the picture below, the right-angle will be made explicit in APP.5 and APP.9 in the Appendix.
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For example, with linear regression as in Definitions 2.3, W would be

{(a +bz1,a+bzs,...,a+ bzy,)|a,breal}.

When written in matrix form (see APP.8 in the Appendix), our General Model 9.4 is sometimes
called the general linear model.

Let SST, SSE, and SSR be as in Definitions 4.2, with 7 and ¢ as in General Model 9.4; we then
have the same right triangle as in Regression Picture 4.3 (this is proven, with vectors, in APP.13 in
the Appendix).

We then define the coefficient of multiple determination to be

R = SS—R
SST
This is in contrast to the case of linear regression, where the coefficient of determination is defined
to be ,
22 _ (5z,9)
Sz,#57,4
SSR

and is then (Theorem 5.3) shown to be equal to 23%.

As with 72, it can be shown that
SST = SSR + SSE,
which is equivalent to (1 — R?) = ‘gg—g; the reader familiar with vectors as in the Appendix should
see APP.13 in the Appendix.

R? measures how close our data is to the desired model W: 0 <R2<1 always, and the closer
R? is to 1, the closer our data is to W.

Definitions 9.5. ANOVA stands for “analysis of variance.” Unfortunately for coherence, this
does not mean the study of population variance o? or sample variance s?; ANOVA refers to the
variance, as in differences, between means of different populations.

More specifically, let I and J be fixed natural numbers. Suppose, for 1 < i < I, the it
population has a mean p;. We are interested in the null hypothesis
Ho:py=p2=---=pr
the alternative hypothesis is the negation of Hy:

H, : at least two of the means are different from each other

For example, let X; be the height, in inches, of a randomly chosen person from Columbus,
Ohio, X> be the height, in inches, of a randomly chosen person from Cleveland, Ohio, and X3 be
the height, in inches, of a randomly chosen person from Cincinnati, Ohio, The null hypothesis

Ho:p = p2 = ps3

translates as “there is no difference in average heights, of people from Columbus, Cleveland, and
Cincinnati, Ohio.”
This might be of interest to a basketball talent scout.

For data, we need measurements from each population, carefully indexed by population.

For1<i<I,1<j<J, define

Xij = jth measurement of it" population.
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In the example above regarding heights of people from Columbus (population 1), Cleveland
(population 2), and Cincinnati (population 3), suppose we measure 5 people from each of those 3
cities. Then 1 < <3=1,1<j <5=J, and, for the values of i and j just stated,

X;; = the height, in inches, of the j** person from the i** city.

To make ANOVA data look more familiar, that is, of the form
ZjE (y11y2ay31 .. ~ay‘n)7

where n is the number of data, note first that n = I.J, since our unordered data is
{z511<i<L1<j<J}.

We will find it convenient to first list, in order, all the measurements of the first population,
then all the measurements of the second population, etc.:

'!7: (Ill,$]2,$13,---,xlj,x21,z22,z23,---,$2J,--.,x11,112,113,---,xjj).

We need some awkward terminology.

For1<i<I,

J
EFZ ’L]a

this is the average of our measurements of the i* population.

rem A%
IL‘EyEEZ k:IJZZ:BzJ—Ith

k=1 =1 j=1
the average of the population averages; this is sometimes called the grand mean of all the data.

The subspace W that we will try to fit our data to (see 9.4) is the set of all vectors in R™
(n = 1J) such that the first J coordinates are equal, the second .J coordinates are equal, etc. This
is imagining that, within a fixed population, all measurements are the same.

The best (least squares) approximation of data % from W can be shown, with vector expertise
as in the Appendix (see APP.12(c) in the Appendix) to be the vector, denoted § = (41, %2, - - - , %),
whose first J coordinates are each Z;, the second J coordinates are T, etc. See Picture 9.7 on the
next page.

ANOVA Alphabet Soup 9.6. As in Definitions 4.2, define the total sum of squares

SST = Zyk— 2_22-’171] ;

i=1 j=1
the regression sum of squares

J
Z(Ti -z)P = JZ(@' - )%

1j=1 i=1

SSR = i(y}c = y)z =

I
k=1 =

and the error sum of squares

SSE = Z Yk — Ok)* ZE Tij — F)2.
k=1

=1 j=1

As suggested by the picture on the next page, SST = SSR + SSE; compare to 4.3 and APP.13.
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ANOVA Sum of Squares Picture 9.7

q h {Xiﬂ : (Y’U \’(t'L, X(S’, T XZ'4 L Xzs', '”’)

%I/%\I/¢¢- %?
J term ¢
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Terminology 9.8. Because of medical and agricultural origins, the i*" population is sometimes
called the i*"* treatment; SSR then becomes SSTr. We will continue to use SSR, as in 9.6, as our
terminology, to emphasize that ANOVA is a special case of model fitting, as in 9.4.

Example 9.9. Let’s get back to human heights, in Columbus (population 1, abbreviated Col),
Cleveland (population 2, abbreviated Cl), and Cincinnati (population 3, abbreviated Cin). Let’s
say we measure 5 people in each of those towns and get the following heights, in inches.

j $1j(COl) I2J(Cl) :1:3_,-(Cin)
il 75 68 68
2 67 67 70
3 68 66 70
4 72 64 71
5 71 63 L
) j 353 328 350

Here are the averages of the measurements from each population:

353 __ 328 350

A

The grand mean is
(70.6 + 65.6 + 70)

3 ~ 68.73.

T =

Here are the alphabet soup sums of squares. Notice that SST = SSR + SSE, at least up to
one decimal place; it can be shown that SST precisely equals SSR + SSE, as suggested by the
Pythagorean theorem and the right triangle on the next page.

SST ~ (75—68.73)+(67—68.73)>+(68—68.73)%+(72—68.73)2+(71—68.73)+(68—68.73) >+ (67—68.73)2
+(66—68.73)*+(64—68.73)+(63—68.73)-+(68—68.73)+(70—68.73)2+(70—68.73)+(71—68.73) 2+ (71—68.73)>
~ 138.94.

SSE = (75—70.6)%+(67—70.6)*+ (68— 70.6)%+(72—70.6)24 (71 —70.6)2+ (68 —65.6) >+ (67— 65.6)2
+(66—65.6)+(64—65.6)*+(63—65.6)2+(68—70)2+(70—70)+(70—70)?+(71—70)>+(71-70)2 = 64.4.

SSR =5 [(z1 —7)* + (T2 — 7)* + (T3 — 7)*] ~ 5 [(70.6 — 68.73) + (65.6 — 68.73) + (70 — 68.73)%] ~ 74.53.

See the drawing on the next page.
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ANOVA picture for Example 9.9.
(75 67 ¢ 72,71, 68 e7. 66, 6% 63, 68, 70,70,70, 71

1

5.6 65:¢, 656,656 4c 4
‘ T/

15 Termy MODEL

\%i, 2_l, %l, %l, %1/%2., %7_’ By
%?,, .‘Z"i( ‘Zg’ %3, 1; ?;?’ .‘7:)7

%i/ -Z'L( %3 }’CGL

/N
‘&l =[70.6,70.6,70.6,70.( 70.6,)
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ANOVA Test Statistic 9.10. For the remainder of Chapter IX, assume, for /,.J and other
terminology as in 9.5, for 1 <7 < 1,1 < j < J, that Xij is normal, with mean E(X;;) = p;, variance
V(Xi;) constant and {X;; |1<i<I,1< j < J} independent. i

For the ANOVA hypothesis test at the beginning of 9.5 our test statistic is

which turns out (we will not go into this) to have what is called an F, (1-1),1(J—1) distribution. See
6.6 for another place where the F' distribution appears.

Inspection of the definitions in 9.6 tells us that SSR is measuring the differences between popula-
tions (notice the (Z; —T)? terms) while SSE is measuring the differences within populations (notice
the (z;; — T;)? terms). This suggests that the ratio %, hence f, measures the relative difference
between sample means 7;,1 < i < I, thus, as f gets large, we are less inclined to believe the null
hypothesis of population means being equal.

As with normal and ¢ distributions, we have critical values: if 0 < a < 1, Fo(1-1),1(J-1) is a
positive number such that

P (F(1-1),1(7-1) > Fa,(1-1),1(0-1)) = .
Since our P-value is

P (Fu-1y10-1> f),
we reject Ho, at significance level a, if and only if f > Fo,(1-1),1(J-1)-

Example 9.11. Let’s perform ANOVA in Example 9.9. We have I = 3 and J = 5, so I-1)=2
and I(J — 1) = 12. Thus our test statistic in 9.10 has an F5 15 distribution.
Here is relevant information about critical values, from [6, Table A9

a  Fy212

0.1 2.81
0.05  3.89
0.01  6.93
0.001 12.97
From Example 9.9,
74.53

f~ o2 ~6.94.
12
Since f > Fo.1,2,12, F0.05,2,12, and Fp 012,12, we reject Hy at significance levels 0.1, 0.05, or 0.01;
since f < Fp.001,2,12, we do not reject Hy at significance level 0.001.

We could also have taken a more direct P-value approach.
P-value = P(Fy 12 > 6.94) < P(F312 > 6.93) = 0.01,
while
P-value = P(Fy 12 > 6.94) > P(F 12 > 12.97) = 0.001,
thus the most we can say about our P-value, using the information given, is

0.001 < P-value < 0.01.

This tells us to reject Hy at significance level greater than or equal to 0.01, and to not reject Hy
at significance level less than or equal to 0.001.

In words, at significance level greater than or equal to 0.01, the data suggests there is no
difference in average heights of people from Columbus, Cleveland, and Cincinnati; at significance
level less than or equal to 0.001, the data does not suggest there is no difference in average heights
of people from that the populations of Columbus, Cleveland, and Cincinnati are equal, on average.
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APPENDIX

This Appendix will quickly summarize finite-dimensional vectors in APP.1-APP.11 and apply
them to prove our results about least-squares estimators and sums of squares of error and regression
(APP.12-APP.13). We also apply vectors to understanding the (z* — Z)? in the estimated standard
error in Definitions 7.2; see APP.15.

For this Appendix, we assume the reader is familiar with matrices, as in [2, Section TA], including
transpose, row n-vectors and column n-vectors, for n = 1,2,3,.... Much of APP.1-APP.11 may be
found in [2, Sections I.B, VI.A, VLB, and VLE].

Definitions APP.1. For n =1,2,3,..., an n-vector is an ordered n-tuple of real numbers
175 (y15y21 .. 'ayn)'

For 1 < k < n, yx is the k** component of 7.

The set of all n-vectors is denoted R™ (reads “R enn”).

We have some algebra in R™: If j = (y1,¥2,...,yn) and Z = (21, 20, ..., 2, ) are n-vectors and c
is a real number, then (¥ + cZ) is the vector

(31 + c21), (y2 +c22), - - -, (yn + c2n)).
In words, we add vectors and multiply vectors by numbers componentwise.

The norm or magnitude of § = (y1,y2,...,yn) is

11 = /32 + 93+ + 32
Note that SSV, from 9.4, is norm squared:

SSV ()= (e — ) = |7 — 22,
k=1
which we may think of as the square of the distance between z and #; see APP.6.

Pictures APP.2. When n = 2 we may draw pictures of n-vectors.

The Cartesian plane represents ordered pairs (a,b) as points or dots; a is the horizontal dis-
placement from the origin, labeled (0,0), and b is the vertical displacement from the origin.




v

46
Often of more interest is to take a pair of points and draw an arrow from one point to the other:
IfI= (0.1, bl) and T = (0.2, bz), with
I = (ag . 0.1) and T = (b2 - bl),

then the 2-vector ¥ = (z1,z2) is represented by the arrow, or directed line segment, from I (the
initial point) to T' (the terminal point).

Said arrow is sometimes denoted 1T , and explains the arrow terminology in Definitions APP.1.

T
b1

x4

b I

‘ !

('h 7o)

Mot bt
A

Notice that every 2-vector is represented by infinitely many arrows. Below we have drawn many
arrows that represent (—1,2).

<
s ol
+
.

~e
-
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Denoting by O the origin, the vector represented by OT is said to be in standard position.
—

The position vector for a point 7' is the vector represented by OT'. This describes a one-to-one

correspondence between 2-vectors represented as points (7' below) and 2-vectotrs represented as

—
arrows (OT below).

ot
O O

It is also worth noting that the norm of Z = (z1, z2)

2] = /=3 + 23

is the length of an arrow representing Z, by the Pythagorean theorem.

N
Xq

The distance between two points ¥ = (y1,¥2) and z = (21, 22) is

I(Z= Dl = V(21 = y1)% + (22 — y2)2.

(%‘,L, 1@)
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It can also be shown that addition of 2-vectors looks like the following, in terms of arrows
representing said vectors:

(i*@)

% )

Multiplication by a number has two possible pictures, depending on whether the number is
positive or negative.

c70’ c.< O]

Calculation and Definition APP.3. We would like an algebraic characterization of a pair of
(arrows representing) 2-vectors being perpendicular.

We will leave it to the reader (or see [2, Terminology 6.5, pages 400-403]) to show that, for
Z = (z1,22), ¥ = (Y1, ¥2),
12+ 711 = I1Z11* + 151 + 2(z191 + 2230).
By the Pythagorean theorem, 7 is perpendicular to ¥ if and only if that last term (zy; + Z2Y2)
equals zero. Thus we like to give it a name: the dot product or inner product of # and 7 is
Ty = (191 + T2y2).

Now we may relate geometry to algebra:

Theorem. A pair of 2-vectors Z and ¥ are perpendicular if and only if their dot product is zero.

oSy

<4
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Advice and Definitions APP.4. In R",n = 1,2,3,..., we encourage the reader to think of
n-vectors as if n were 2, in ideas and pictures as in APP.2 and APP.3.

As with n = 2 in APP.2, wed like to think of n-vectors as being either points or arrows.
The pictures of addition of 2-vectors and multiplication of 2-vectors by real numbers, drawn at
the end of APP.2, can and should be drawn for the same operations with n-vectors.

For n =1,2,3,..., extend the definition of dot product (APP.3) to R™ in the most natural
way:

n
(@1, 82, Tn) - (Y1, Y25+, Un) = D Tkl
k=1

Motivated by the Theorem in APP.3, define vectors # and ¢ in R™ to be perpendicular, also
called orthogonal, denoted

Z L 7,
if #- i = 0. The picture for the just-mentioned Theorem should be drawn here.

By virtually the same argument, the Theorem in APP.3 extends to the following.

Pythagorean Theorem APP.5. For n = 1,2,3,..., a pair of n-vectors Z and ¥ are perpendicular
if and only if

1+ 71 = 12)1% + (171>

As part of the pictorial point of view recommended, visualize this Theorem as a right triangle.
-~ - Z
HX+51\ =

IS0+ g ]l

X+ )
<X+3 +,ﬂ?

L.

asy

=

%

More Advice and Definitions APP.6. For 7 = (1, z,..., Zn), ¥ = (Y1,Y2,---,Yn), let’s define
the vector from 7 to 7 as

(- 72),
which we’ve already defined as a special case of our vector algebra in APP.1, namely

((yl - -Tl), (y2 - 372)1 sy (yn — Il?n))

Thinking as if n = 2 (see APP.2), visualize ¥ and Z as points, and (7 — Z) as an arrow, with
initial point & and terminal point 7.

LN
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Again mimicking n = 2, define, in the picture just drawn of “points” Z and 7, and an “arrow”
(y — %), the distance between Z and 7 to be

1@ =2 = V(W1 — 212 + (g2 = 22)2 + - + (¥ — Tn)?).

As in the Regression Picture 4.3, we have data y;,ys,. .., y, that we put together into a vector
Y = (Y1,¥2,---,Yn)- The theme of this Magnification is that we expect, at least on average, said
vector to belong to a certain type of subset (our “model” that we try to fit the data to) of R™, that
we will now describe.

Definition APP.7. A subset, W, of R", is a subspace if it has the following two properties.
(1) If Z and ¥ are in W, then (Z + ¢) is in W.

(2) If  is in W and c is a real number, then c7 is in W.

Terminology APP.8. If, for some k and m, 7 is a k-vector and A is an (m x k) matrix, then AZ
is the m-vector obtained by writing Z as a column k-vector, then performing matrix multiplication.
It can be shown that any subspace of R™ has the form

{A%|Z is in R*}
for some £ =1,2,3,..., and (n x k) matrix A.

When a subspace W is written in the matrix form just mentioned, the General Model 9.4 then
becomes (see 1.2)

Y =A%+ €,

with £ as in 1.2, ¥ in R¥, and is sometimes called the general linear form (see 9.4).

Given data ¥ in R™ and a model, that is, a subspace W of R™ as in 9.4, that we are trying to
fit i to, our goal is to find Z in W that 7 is closest to; that is, we want

|7 — || < |7 — ],
for all @ in W.

Our intuition is to “drop a perpendicular” from 7 onto W; that is, we want wy in W so that
(¢ — W) is perpendicular to all vectors in W.
This is given a name; see the picture after Definition APP.9.

Definition APP.9. (See [2, Definition 6.13, page 410].) If W is a subspace of R™ and 7 is in R™,
then the (orthogonal) projection of § onto W, denoted Py (%), is a vector in W such that

(7 — Pw(y)) L,
for all @ in W. -7
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Here is a precise statement of our “drop a perpendicular” intuition.
Theorem APP.10. (See [2, Theorem 6.14, page 412]) For W and ¥ as in APP.9, Py (%) is the

unique best approximation (also called least-squares approximation) of 7 from W; that is,

17— Pw @) < |7,
for all w in W.

Proof: Fix w in W. Since (§ — Pw (7)) L (Pw(y) — w), the Pythagorean theorem APP.5 implies
that

17— @l* = (7~ Pw (@) + (Pw(@) — &)II* = |7 — Pw@)I> + |(Pw @ — D)|* (%)
(*) clearly shows that |7 — || > |7 — Pw(%)||?, hence
19— @l > ||y — Pw(7)||, for any @ in W,

thus Pw (%) is a best approximation of  from W. Uniqueness also follows from (*), since ||§ — @|| =
|7 — Pw ()| then implies that || Pw (%) — || = 0, which implies that @ = Py (7).

.

O

7 wa)-d) B )

Here is a more surprising result, where we denote by AT the transpose of a matrix A. Recall
(Terminology APP.8) that all subspaces W of R™ have the form of Theorem APP.11.

Theorem APP.11. (See [2, Theorem 6.55, pages 490-491]. Suppose, for some k = 1,2,3, ..., (nxk)
matrix A,

W = {AZ|% is in R¥}.
in R*, Az* = Py (%) if and only if z* is a solution of the normal

*

Then, for any 7 in R®, z
equations
AT Az* = ATy,

Proof: See [2, Theorem 6.55, pages 490-491]. O

Examples APP.12. Let’s use Theorems APP.10 and APP.11 to get least-squares estimators in
the special cases of model fitting that we have discussed in this Magnification.

(a) Simple Linear Regression. The subspace we are trying to fit the data 7 to (see Definitions
2.3) is
W = {((bo + b171), (bo + b122), ..., (bo + b17n))} :

the estimators [?0 and ﬂ] are minimizing what we called, in Definitions 2.3,
n

SSV(b(], b]) = Z[yk — (b(] + blzz:k)]z = ”]7— ((bo + b1I1), (bo + b1£I)2), S (bo =} bliL‘n))”2
k=1
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Writing the vectors in W as column vectors

-bo + b1z I @
bo + bizo 1z
. B bo
= b
_bO + b1y 1 =z,
we see that we are in the setting of Theorem APP.11, with
i
1 )
= * bO
A= k=2 and z*=
b1
11z

Theorems APP.11 and APP.10 tell us that the least-squares approximation of 7 from W is
ka =,BA0 +IBA1:L‘k (k = 112535-"3’”),
where (Bo, ﬁl) is the solution of the normal equations

AT A [g‘)] — AT§.

i |

We leave it to the reader to perform matrix multiplication, simplifying the normal equations to
n (Ek 1$k] [gO] [Zk 1Yk ]
(Ck=1zk)  (Xhe 1$k > k=1 TkYk
nfo . Ok xk)ﬁl = kY
(Ceaedbo + (TizR)Br = Tpoemk

as in (near the end of) 9.2.
Solving these normal equations gives us Theorem 3.1.

or

(b) Simple Quadratic Regression. See 9.2. This is very similar to part (a) of these Examples,
so we will only sketch the argument, relying on analogies to part (a).

The model W that we are now fitting % to has vectors of the form

—bo + b1 + bzx%- 1 1 II:%-
bo + b1zo + bzz‘% 1 z9 x% b
0
. b2
[bo + bizp, + baz? | 1 2, 22
so we now have Theorem APP.11 with
-]. I 113?-
2
1 zo z3 Bo
A= k=3 and z*= |bh
. - b2
1 z, 22

and normal equations
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that, after much worse matrix multiplication than in (a), simplify to

i (Zg=1 Tk) (ch::l z; ‘6:0 X’;;cl:l Yk
(Xk=1Tk) §2k=1 xig §2k21 z% Bi| = [Xk=1ZThUk

1
(EZ=1 -”02) Zl':l “’2 > k=1 Th p) > ko1 TRk

or

1o . Xk xk)ﬁ:l + (k Ii)é? = Dk
(k mk)ﬁfo + (2 x%)ﬂ} + (3% xi)@z = 2k TkYk
k)b + (Cpxd)b + Crzi)Be = Ypziuk

As stated near the end of 9.2, the solution (Bo, ﬁl, Bg) of the three equations just stated is the

least-squares estimator of (g, 1, 32) and y = ﬁo + ﬁlm - ﬁgxz is the least-squares parabola for the
bivariate data in Assumptions 2.1.

(c) ANOVA. We will do this only for the special case in Example 9.9, and leave the derivation of
the general case to the reader (see the last paragraph before 9.6 and picture 9.7 on the succeeding
page).

The model W as in 9.4 that we are fitting the data in Example 9.9 to has the form (see “ANOVA
picture for Example 9.9” on the page after the statement of Example 9.9)

21
21
21
21
21
22
22
22| =
22
z2
23
23
23
23
23

21
22
23

C OO0 OOCOOOO M H I
OO OO0 HKHREMFEHMFHROOOOO
- -0 00000000 O

r
—

thus we are again in the setting of Theorem APP.11, with

1 0 0

1 0 0

1 0 0

1 00

1 00

01 0

0 1 0 21
A=(0 1 0|, k=3, and z*= |2

01 0 23

01 0

0 0 1

0 0 1

0 0 1

0 0 1

0 0 1]




54

A relatively short calculation shows that
5

5 0 0 leyk
ATA=10 5 0| and ATyj= E[):syk )

005 lec,=11 Yk
so that the normal equations become

5
521 Z’fo=1 Yk
522 = Z 1’%= 6 Yk | »
923 > ke11 Yk
easily solvable as
5 e
2 %Zﬁdm 1
2 = | 52 k=6¥ | = |[T2],
1
% 5 2 k=11Vk z3
so that our least-squares approximation from W is

1
J

T

T3

i
5
I

IR s s I I e e s S S S

8
w

which, as a vector, is

(Z1, 71, 71, 71, 71, 73, T3, 72, T2, T2, T3, T3, T3, T3, T3)

= (70.6,70.6, 70.6, 70.6, 70.6, 65.6, 65.6, 65.6, 65.6, 65.6, 70, 70, 70, 70, 70).
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Orthogonality and Pythagorean Theorem for Sums of Squares APP.13. All our model
fitting, as in 9.4, including linear regression and ANOVA, have the following picture, where W is as

in 9.4, ¥ is the data and § is the fitted values, meaning the least-squares approximation of ¥ from
W (see Theorem APP.10).

>

4

%&

The definition of the orthogonal projection (Definition APP.9) now implies that the vectors
drawn in red are perpendicular (also known as orthogonal); that is,

& —791) L (7 9).

Since SSR = ||(§ — y1)||? and SSE = || — §|?, the Pythagorean Theorem APP.5 now implies
that

SSR+SSE =SST = ||(§—31) + (7 - 9)|? = (7 - 7D

See 4.3 and 9.7. PR
7

3 SsT =
SSR+ SSkE
S5 T ——
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Our last application of linear algebra is unrelated to any other applications in this Appendix.
We are motivated now by the presence of (z* — ) in the estimated standard error sy in Definitions
7.2, and the subsequent discussion in the last three paragraphs at the end of the Answer to Example
7.3(b); in particular, we would like now to state in what sense the number z* is closer to the data
T1,Z2,- - ,T, when said number is closer to Z.

Definition APP.14. For 2; and 2 real numbers, we will say that z; is closer to the data

T1,T9,...,T, than 2o if
n n
Z(zk—zl <Z£Bk—22
k=1 k=1

Theorem APP.15. z; is closer to the data, as in Definition APP.14, if and only if z; is closer to
T than 2p; that is, [T — 21| < |T — 22].

Proof: Let £ = (z1,z2,...,Zn), i= (1,1,...,1), the n-tuple whose components are all 1, and W
equal the subspace of real multiples of 1. We leave it to the reader to show that

71 = Pw(Z) (MUST SHOW that ((£—Z1)-cI) =0 for all real c),
so that orthogonality and the Pythagorean theorem APP.5 imply that, for any real z,

n n
D (@x—2)? =& - 21|° = |Z - 21| + |71 - 21)|2 = Y _(zk — 7)% +n(z - 2)°.
k=1 k=1
Q

@&
1
For real z;, 29, this implies that

[Z(xk - z1 Z (zx — 22 =n [(E = z1)2 —(T- 22)2] )
k=1

k=1
so that
n n
z(xk -z)? < Z(a:k —2)? ifandonlyif (F—2)%< (Z—2)>,
k=1 k=1
which is equivalent to |ZT — z1| < |T — 22/. O

Remark APP.16. A special case of Theorem APP.15 is the fact that

sz—l‘ <Zxk—z
k=1

for any real z # 7; that is, z = T minimizes ) ;_, (zx — 2)%.
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HOMEWORK
See Chapter VIII for formulas needed in Problems 1-4.

1. By filling in the table below, get the least-squares line for the data
{(_41 "7)’ (_2’ 0)’ (07 1)7 (01 3)’ (17 _1)x (lv 2)1 (27 l)a (3v O)a (4» 1)7 (510)}-

2 2
Y Tk Yr TkYk

o~
8
Eod

—7
0
1
3

-1

05 © 00D U W

[ ]
cnu;wm.—u—noow#_
O OMN

¥

In addition, for this data, get
(a) the sample correlation coefficient;
(b) the coefficient of determination;

(c) the sums of squares SST, SSE, and SSR, in Definition 4.2 and Theorem 5.3, by using the
coefficient of determination from (b);

(d) s, our favorite estimator of o in the Simple Linear Regression Model 1.2.
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2. Suppose grass growth, as a function of fertilizer, satisfies the Simple Linear Regression Model in
Definition 1.2; that is, fertilizer is the predictor variable and grass growth is the r&sponse variable.
We collect data on 18 plots of grass

{(1,01), (x2,92), ... (218, y18) }

with z measured in liters of fertilizer per acre and y measured in centimeters per week and obtain
the following summary data.

18 18 18 18 18
Y 7k =180, 2} =2800,% y =54, 4= 170, " zxyx = 620.
k=1 k=1 k=1 k=1 k=1

(a) Find the least-squares estimators of the slope and y intercept of the true regression line and the
estimated regression line for the data.

(b) Find the coefficient of determination of the data.
c) Find the sample correlation coefficient of the data.
) Find SST, SSR, and SSE for the data.

(

(d

(e) Get s2, our favorite estimator of o2.

(f) Get a 99% confidence interval for the slope of the true regression line.
(8

) Test, at significance level 0.01, whether there is a useful linear relationship between grass growth
and fertilizer.

(h) Get a 95% confidence interval for the true number of centimeters that grass grows in a week (on
average), when 20 liters of fertilizer per acre is used.

(1) Test, at significance level 0.1%, the claim that grass grows more than 3.9 centimeters in a week
(on average), when 30 liters of fertilizer per acre is used.

(j) Test, at significance level 0.05, the claim that increasing the fertilizer per acre by one liter increases
grass growth by more than 0.07 centimeters per week, on average.
See Example 6.5(d) or (e).

(k) Test, at significance level 0.05, the claim that increasing the fertilizer per acre by one liter
increases grass growth by more than 0.06 centimeters per week, on average.
See Example 6.5(d) or (e).
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3. Assume that happiness Y, as a function of pain z, satisfies the Simple Linear Regression Model
in Definition 1.2.

We collect data
{(.’L‘], Y1), (z2,Y2), (z3, y3)7 (x4, y4)} == {(_1’ 8),(0,5), (1,0)), (2, 1)}

(a) Get the least-squares estimators of 3y and S, in the Simple Linear Regression Model, and the
least squares line, or estimated regression line.

(b) Get the coefficient of determination, measuring the proportion of observed variation in happiness
that can be explained by its linear relationship with pain.

(c) Get s2.

(d) Test, at significance level a = 0.1, my belief that (on average) increasing pain decreases happiness.
See Example 6.5(c).

(e) Get a 90% confidence interval for (fy + 3/31), the expected average happiness with a pain of 3.
(f) Test Ho : (Bo —261) =1 versus H, : (Bp — 2/1) > 1, at significance level 0.001.

4. Suppose we do regression on data

{(0,1),(1,5),(3,4),(0,2),(1,2)}
and get an estimated regression line of y = 1.97 + (0.833)z.

a) Get the fitted values (for z =0, 1, 3).

(
(b) Get the (five) residuals.
(c) Get SSE.

(

d) Get s?, our favorite estimator of o2, in the Simple Linear Regression Model.

5. Given bivariate data as in Definition 1.1 find equations, analogous to those appearing at the end
of 9.2, whose solutions ﬂo ﬂl, ﬁz, ﬂ3 minimize the sum of squares of vertical displacements

SSV (bg, b1, ba, b3) = Z yk — (bo + bizk + bgl‘k o b3:l)k)]2 :
k=1

that is, AR
S8V (Bo, b1, B2, B3) < SSV (bg, b1, ba, b3)

for all real numbers bg, b1, b, b3.

This may be done with matrix methods, as in Examples APP.12 in the Appendix, or by noticing
the pattern in going from linear to quadratic regression, in the sets of equations at the end of 9. 2,
and extending said pattern to polynomials of degree three.
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HOMEWORK ANSWERS

Answers may differ because of different rounding.

1.

_k_ Tk Yk Tp Yr TkYk
1 —4 -7 16 49 28
2 -2 0 4 0 0
3 0 1 0 1 0
4 0 3 0 9 0
5 1 -1 1 1 —1
6 1 2 1 4 2
i 2 i 4 1 2
8 3 0 9 0 0
9 4 ! 16 1 4
10 5 0 25 0 0

>k 10 0 76 66 35

Using the “computational formulas”

1 1 1
Szg=35— —(10)( ) =35, Szz=066— E(0)2 =66, Szz="T76— E(10)2 =66, T=1,
So let’s get S
. 75 3D 4 - 35 35
= Y = — = — T = —_(— —
=5 o6 =T AT=0- () =G
thus our least-squares line is
== + 3—5:1: (z—1)
Y= 766 66 66
Now let’s answer questions (a)—(d)
(a) r = —SSJS— = 38 ~ 0.530.
(b) r2 = (28)2 ~ 0.281
()
9 3,131
SST = Sg3=66, SSE=(1—r )S~~= (1—(—) )66 = 66 ~ 47.440,
2
SSR=r w=( )266_16—625~18561

[ SSE [ &2 [3131
s = (_'n.——2): rl_OﬁiT)_ WN2435
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2. Again we begin with “computational formulas”:
1 1 1
Sz, = 620 — 72(180)(54) = 80; Sz,z = 2800 — 1—8(180)2 =1,000; Sygz=170— '1§(54)2 =8;
7=3,7=10.

(a) B = T000 000 = 0.08; fo = 3 — (0.08)(10) = 2.2; our estimated regression line is
y = 2.2+ (0.08)z.
(80)*
(b) r? = mo00)® — 0-8-
c) r =+/0.8 ~ 0.894.
ST = Sz 3 =8, SSR =8(0.8) =6.4; SSE = (8)(1 —0.8) = 1.6.

~ A~ o~ o~
&
U

0.1

S
= /52 V1,000
We also need the critical value tg.g05,16 = 2.921.
Our interval is

B+ (2.921)(s,) = 0.08 + (2.921)(0.01) ~ 0.08 £ 0.029 = (0.051,0.109).

= 0.01.

(g) This is testing (see Definition 6.4)
Hy:5, =0 versus H,: (3 #0.

Our statistic is

thus our P-value is
P(|Ti6| > 8) = 2P(Ty6 > 8) <2P(Ti6>3) = 2(0.004) <0.01 = a,

thus we reject Ho, and conclude that there is a useful linear relationship between grass growth and
fertilizer.

(h) Denote, with z* = 20,

py.z» = Bo+ B1(20), Y = fo + $1(20) = 2.2+ (0.08)(20) = 3.8;
we also need %g.025,16 = 2.120, and

gL, 20-7? (20 —10)?
=9t s \/_\/ o0~ 0125

Our confidence interval is now

Y £tg 1655 ~ 3.8+ 2.120(0.125) = (3.535, 4.065).
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(i) Now we have z* = 30. We are testing
Hy: py.g» =3.9 versus Hg: py.z- > 3.9.
As with (h), define

T B 1 -z — 1 (30-10)

Our test statistic, with a t1¢ distribution, is

_ Y -39 46-39
T sy 0.213

t ~ 3.3

so that our P-value is
P(T16 > 3.3) = 0.002 > 0.001,

thus we do not reject Hp; there is insufficient data to conclude that grass grows more than 3.9
centimeters per week, on average, with significance 0.1%.

(§) Ho : 5} = 0.07 versus H, : 31 > 0.07
_ f1—0.07 _ 0.08-0.07 __
t= Bls‘,-l = 4G =10
P-value = P(T16 > 1) = 0.166 > 0.05,

so we don’t reject Hp; there is insufficient evidence to conclude that increasing the fertilizer per acre
by one liter increases grass growth by more than 0.07 centimeters per week, on average.

(k) Hg : 1, = 0.06 versus H, : 31 > 0.06

_ B1—0.06 _ 0.08-0.06 _
t= 55, 001 =2, 50

P-value = P(Tyg > 2) = 0.031 < 0.05,

so we reject Ho; there is sufficient evidence to conclude that increasing the fertilizer per acre by one
liter increases grass growth by more than 0.06 centimeters per week, on average.
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3. Calculate, from the table below (using “computational formulas”), that

T =i0.5, gy =3.5, sz =5, Syy =41, Szy = —13.

2 2

k' zx ye Tp Y Tkyk
1 -1 8 1 64 -8
2 0 5 0 25 0
3 1 0 1 0 0
4 2 1 4 1 2

S, 2 14 6 90 -6

(a) Our least-squares estimators are 3; = =3 = —2.6,60 = 3.5 — (—2.6)(0.5) = 4.8, thus our
estimated regression line is
y=4.8-—2.6z.

—13)2
(b) r2 = L—)—sxu = 189 + 0.824.

(c) SSE = (1 —12)Sgg = (1 — 182)(41) = 38x41 _ 36 _ 73 thys
7.2
2
s sy o 3.6
A

(d) We are testing, at significance level oo = 0.1,
Hy:31 =0 versus H;: [ <0.

s /3.6
g = = — = v0.72,
56, /Sf_,f;' 5

We need

thus our test statistic is

Bi—0 —2.6
t= =—— ~-3.1,
84 V0.72

so our P-value is ~
P(T» < -3.1)=P(T>>3.1)=0.045< 0.1 = o,
so we reject Ho; at significance level 0.1, our data suggests that increasing pain decreases happiness.

(e) Here z* = 3, so our estimator of (8 + f1z*) is

Y = (6o + fiz*) = 4.8 + (—2.6)3 = —3,
and our confidence interval is

- 1 (z* —17)2 1 —0.5)2
Y £19.05,28p = —3 % 2.920\/52 [ﬁ - (zs%] =-34 2.920\/3.6 [Z - (BTOS)]
x,r

=—-3+2.920v5.4 ~ -3+ 6.79 = (—9.79, 3.79)
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(f) Now we have z* = —2, with inference on (8 + 81z*). Our estimator is

Y = 6o + frz* = 4.8 + (—2.6)(=2) = 10,

with
1 (z*—7%)2 \/1 (-2 — 0.5)2
& = — =V3.64/ - =54
Sy =38 n+ Siz 3.6 4+ 5 5.4,
thus our test statistic is 01
t= " ~ 3.9,
V5.4

so our P-value is ~
P(T> > 3.9) = 0.030 > 0.001 = «,
thus we do not reject Ho; the data is insufficient to conclude that (Gy — 23;) > 1.

4. (a) Writing “fit” as shorthand for “fitted value,” we’ll mimic Example 4.6.

(a) Plugging z into the estimated regression line and writing “fit” for “fitted value”:
T 0 1 3
fit 1.97 2.803 4.469
(b) Denoting
($1, yl) = (0’ 1)’ (-'1"2, y2) = (1? 5)’ (.’1,'3, y3) = (3’ 4)v (.’L‘4, y4) = (0’ 2)7 (-7757 y5) = (17 2)1
we have fitted values from (a)

41 = 1.97, 4> = 2.803, gj3 = 4.469, 3js = 1.97, 5 = 2.803.

Here are the desired residuals:
&1 = (y1—%) = (1-1.97) = —0.97, €2 = (y2—2) = (5—2.803) = 2.197, €3 = (y3—43) = (4—4.469) = —0.469,
€= (y4 = j4) = (2 == 197) = 0.03,65 = (y5 — ]js) = (2 — 2803) = —0.803.

(c) SSE equals

5
D (er)? = (=0.97)% + (2.197)% + (—0.469) + (0.03)? + (—0.803)* ~ 6.633.

k=1

(d)

8= ﬁss;«: = (51f2) [(=0.97)% + (2.197)% + (—0.469)2 + (0.03)% + (—0.803)?] ~ 2.211.
5. N . . 5
nbo  + Cpz)h + (CpR)B + (kB = Tim

(Crze)bo + (Cizi)Bi + (Ckzi)Be + (Tizi)s = Xpzewk
(Cee)bo + (kai)ﬁ} + (Zkri)liz + (kB = Liziw
(kai)ﬂﬂ * (kai)ﬂl T (kai)ﬂ2 + (kag)ﬁs = kazy’c




65

REFERENCES
1. R. deLaubenfels, “The Victory of Least Squares and Orthogonality in Statisfics,” The Amer.
Statistician 60 (2006), 315-321.

2. R. deLaubenfels, “Linear Algebra,” or E Pluribus Unum,
https:/ /teacherscholarinstitute.com/FreeMathBooksHighschool.html (2017).

3. R. deLaubenfels, “Statistics Introduction Magnification,”
https: / /www.teacherscholarinstitute.com /MathMagnificationsReadyToUse.html.

4. R. deLaubenfels, “Statistics: Hypothesis Testing Magnification,”
https://www.teacherscholarinstitute.com/MathMagnificationsReadyToUse.html.

5. R. deLaubenfels, “Statistical Inference on Mean and Proportion Magnification,”
https: //www.teacherscholarinstitute.com/MathMagnificationsReadyToUse.html.

6. J. L. Devore, “Probability and Statistics for Engineering and the Sciences,” Brooks/Cole, eighth
edition, 2012.

7. A. Hald, “A History of Parametric Statistical Inference From Bernoulli to Fisher, 1713-1935,”
Springer, 2007.

8. J. Saxon, “Algebra 1. An Incremental Development,” Second Edition, Saxon Publishers, Inc.,
1990.

9. S. M. Stigler, “The History of Statistics: The Measurement of Uncertainty before 1900,” the
Belknap Press of Harvard University Press, Cambridge, MA, 1986.




01000 01000 11000 11000 11000 21000 2000 €1000 €1000 €1000 (03>
y1000 #1000 S1000 S1000 91000 91000 L1000 81000 81000 61000 6¢C
61000 02000 12000 12000 22000 €2000 €2000 $200'0 S2000 9Z00'0 8c
92000 L2000 82000 62000 02000 1000 Ze000 £e000 ¥€00'0 Se00'0 A A
96000 LE000 B8E000 6000 0000 000 €000 000 SPO0'0 LPOO0 9C
8000, 6000 18000 2s000 #3000 SS00'0 L9000 635000 09000 29000 ST
r900'0 99000 89000 69000 1000 €.000 S/000 8,000 08000 28000 ve
F800'0 L8000 68000 16000 ¥600'0 96000 66000 20l00 $0100 L0100 €T
01100 €100 9Ll00 61100 2cloo S2100 62100 Zeo 9€100 6E100 [ & A
Er100 o¥ 100 0sl00 ¥S10°0 85100 29100 99100 0L100 v,L100 6L100 %4
€8100 88100 26100 L6100 20200 L0200 Z1z00 L1200 2¢ceo0 82200 0T
EE200 6€Z00 ¥200 0200 95200 29200 . 89200 ¥.200 18200 /8200 6l
$620°0 LOE0'0 L0200 1200 2ce00 62€00 9£e00 Pe0'0 1SE0'0 6500 g'l
19200 SLe00 800 Z6E00 lov0'0 6000 8100 L2r00 9er00 o000 L}
SSF0'0 Ser0'0 SLPO0 Ser0'0 S6F0°0 G0S00 91900 92500 LE€S00 8bs0'0 9l
65500 1.S00 28500 P6S0°0 90900 81900 0e900 £r90°0 83900 89900 Sl
18900 #6900 80,00 12,00 GeL00 6v.00 ¥9.00 8,00 €600 80800 vL
€2800 8E800 €580°0 69800 S880°0 10600 81600 ¥€60°0 18600 89600 €1l
Se60°0 €001°0 0col'0 8e0}'0 93010 SL0L0 £601°0 Ziilo IELLIO ISLLO zl
0LLL'0 06LL'0 olzLo (0,54 %] 18210 (PEAN] zezl’o vIELO SEELo LSEL'O 'l
6.E1°0 Lo 10 €2rio 910 691’0 6y 10 SIS0 6ESL0 29510 L8510 ol
L1gL'o Se9l’o 09910 S8910 LLLLVO 9eL1’0 2910 8810 visl'o w8L'o 60
/9810 #6810 2z61L0 6k8L°0 L/B10 S002'0 €020 19020 06020 6120 80
skico LLIZ0 902Z0 9e2Z0 992¢'0 96220 LCEZ0 8Se2°0 68E2°0 [o'AzAle] L0
1S¥Z'0 €8r20 1 45=Alv] o9rS2'0 8.52°0 11820 er92 0 9/92'0 60.2°0 erLZ 0 90
9/.20 01820 [92°7Al] L1820 ziez’o ov62'0 18620 SIO0E0 0S0E0 GBOE'0 S0
IZIEQ 9GIED CBIED 822E0 POZE0 00Ee'0 BEEE0 Z.Lee0 (5.0, 254¢] obPE0 ¥'0
€8PE0 0ZSE0 LSSED y6SE'0 ZE9E0 699€°0 LOLEOD SkLEO €8.E0 1Z8E0 €0
6S8E'0 LBBED 9E6E°0 v.6E0 15110, 40] Z90b'0 05040} 6Z1lr'0 89P0 LOZP0 (A
VAz# 4o} 282v'0 SCEP'0 yoeEr 0 poby 0 ey o €8P0 zesh’o 29Sh'0 20ey'0 10
Lok 0 189F°0 12Lv'0 19.¥°0 loeb'0 ' Opebo 088’0 ozer'o (055 40] 000S0 00
60°0 80'0 100 90'0 + 90’0 0’0 £0°0 200 10°0 00'0 z
; .
// _
e
_ L = M2 WY \\
T < Wv L

(fe.L 14Bry ey Ui sealy) UOHNGLISI [EWION PJEpUE}S 8]




HWON =

W ooNOO;

15
16
17
18
19

20
21
22
23
24

25
26
27
28
29

30
32
34
36
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Critical Values for t Distributions

0.10

3.078
1.886
1.638
1.533

1.476
1.440
1.415
1.397
1.383

1.372
1.363
1.356
1.350
1.345

1.341
1.337
1.333
1.330
1.328

1.325
1.323
1.321
1.319
1.318

1.316
1.315
1.314
1.313
1.311

1.310
1.309
1.307
1.306
1.304

1.303
1.299
1.296
1.289
1.282

0.05

6.314
2.920
2.353
2.132

2.015
1.943
1.895
1.860
1.833

1.812
1.796
1.782
1411
1.761

1.753
1.746
1.740
1.734
1.729

1.725
1:721
1.717
1.714
1.711

1.708
1.706
1.703
1.701
1.699

1.697
1.694
1.691
1.688
1.686

1.684
1.676
1.671
1.658
1.645

0.025

12.706
4.303
3.182
2.776

2.571
2.447
2.365
2.306
2.262

2.228
2.201
2179
2.160
2.145

2.131
2.120
2.110
2.101
2.093

2.086
2.080
2.074
2.069
2.064

2.060
2.056
2.052
2.048
2.045

2.042
2.037
2.032
2.028
2.024

2.021
2.009
2.000
1.980
1.960

a
0.01

31.821
6.965
4.541
3.747

3.365
3.143
2.998
2.896
2.821

2.764
2.718
2.681
2.650
2.624

2.602
2.583
2.567
2.552
2.539

2.528
2.518
2.508
2.500
2.492

2.485
2.479
2473
2.467
2.462

2.457
2.449
2.441
2434
2.429

2.423
2.403
2.390
2.358
2.326

0.005

63.657
9.925
5.841
4.604

4.032
3.707
3.499
3.355
3.250

3.169
3.106
3.055
3.012
2.977

2.947
2.921
2.898
2.878
2.861

2.845
2.831
2.819
2.807
2.797

2.787
2.779
2.771
2.763
2.756

2.750
2.738
2.728
2.719
2.712

2.704
2.678
2.660
2.617
2.576

Og:
s

I CTRVAEE ¥
0.001 0.0005
318.310 636.620
22.326 31.598
10.213 12.924
7.173 8.610
5.893 6.869
5.208 5.959
4785 5.408
4.501 5.041
4297 4781
4144 4587
4.025 4437
3.930 4318
3.852 4.221
3.787 4.140
3.733 4.073
3.686 4015
3.646 3.965
3.610 3.922
3.579 3.883
3.552 3.850
3.527 3.819
3.505 3.792
3.485 3.767
3.467 3.745
3.450 3.725
3.435 3.707
3.421 3.690
3.408 3.674
3.396 3.659
3.385 3.646
3.365 3.622
3.348 3.601
3.333 3.582
3.319 3.566
3.307 3.551
3.262 3.496
3.232 3.460
3.160 3.373
3.090 3.291
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