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STATISTICAL INFERENCE on MEAN and PROPORTION MAGNIFICATION

This is one of a series of very short books on math, statistics, and physics called “Math Magnifi-
cations.” The “magnification” refers to focusing on a particular topic that is pivotal in or emblematic
of mathematics.

OUTLINE

This magnification constructs confidence intervals and hypothesis tests for mean and proportion,
in an organized, unified way, that was derived for a special case in prior magnifications (see [4] for
confidence intervals and [5] for hypothesis testing).

As promised in [4] and [5], the constructions of this magnification are essentially the same as
what appeared with motivation and detailed derivation in [4] and [5].

Many examples are given. The introduction includes the definition of a controlled experiment,
central to science.

Prerequisites for this magnification are algebra ([8] is more than sufficient), the basic terminology
of statistics, as in [3] or [6], and the definitions and motivation for confidence intervals and hypothesis
testing, as in [6] or [4] and [5]. The basic language of probability, as in [2], is also needed for this
magnification. A more thorough understanding of probability, as in [1] or [6], would be helpful but
is not necessary.

We will adopt, in this Magnification, the custom of stating that numbers from probability tables
are equal to what we want, although they are usually only an approximation. We also assume
the popular custom of upper-case letters, e.g., X, being random variables, with the corresponding
lower-case letter, e.g., z, being a numerical measurement of X.




1. INTRODUCTION

Statistics worries about populations too large for us to know much about individuals. The most
we can hope for is information about some measurement or characteristic of the population, called
a parameter. This is where sampling begins, as in [3].

Two natural parameters (see [3, Definitions 6] are mean or average and proportion or per-
cent. For example, if we were concerned about people’s yearly incomes, we could calculate the

average yearly income, or we could calculate the proportion of people who make enough money to
survive.

Of particular interest is the difference between two population means or proportions, for the
following reason. If we want to estimate the effect of a treatment, we would apply said treatment
to a population X, and compare it to another population X5, that does not receive the treatment.
Thus we would perform statistical inference on (u; — p2), a difference of means, or (p; — p2), a
difference of proportions. X» is called a control or control group. Ideally, X should differ from
X1 only in not receiving the treatment; statistical inference on differences would then qualify as a
controlled experiment.

For example, if we wanted to study the effect of vitamin pills on people, one group of people
would receive vitamin pills, while another (control) group would be deprived of vitamin pills. After
a month, we might compare the proportion of sick people in the vitamin pill-taking group to the
proportion of sick people in the control group. Alternatively, we might compare the average number
of pounds that the people taking vitamin pills can military press to the average number of pounds
the people in the control group can military press. To be a controlled experiment, we would want the
two groups of people to be the same, except in their vitamin pill consumption. For example, if the
people in the control group were much older, on average, than the people in the vitamin pill-taking
group, it would not be a controlled experiment.

The primary outcomes of statistical inference are confidence intervals and hypothesis tests. We
have seen both of these, for the (unknown) population mean y, of a population that is normally
distributed with known standard deviation o; see [4] and [5]. We have seen, in this scenario (see
horizontal line (1) in the tables in Section 2 of this magnification) how both confidence intervals and
hypothesis tests are constructed from the test statistic

W) _ 7 &,

v
which is a perturbation of the sample mean X, the preferred estimator of . Actual numbers for
relevant probabilities appear when we haul out tables of Z probabilities, as in the tables at the end
of this magnification. See (4, Chapter 2].

Notice the flow chart for statistical inference about a parameter 6, illustrated in the special case of
[4] and [5]. Some function of the data, called an estimator, that we believe is good for approximating
0, is constructed. Said estimator is then modified to something with a familiar (meaning tables for
it exist) probability distribution, called a test statistic. The test statistic is used for both confidence
intervals and hypothesis testing.
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The parameters of interest in this magnification are mean y and proportion p; see [3, Definitions
6] for definitions of mean and proportion, of both samples and populations.

Following the flow chart above, Table 2.3 gives test statistics, Table 2.4 gives confidence intervals,
and Tables 2.5 and 2.6 give hypothesis tests; Table 2.5 with P-values (see Theorem 2.2), Table 2.6
with rejection regions.

Definitions 1.1. It is often not realistic to assume, as in [4] and [5], that o is known; we must
estimate it from data :cl, 2, ...,Tn with the sample variance

2 — ( k=T = —— (@1 -2+ (22 -T2 + - + (za — D)?],
(n—1)

a popular estimator of the population variance o2, or the sample standard deviation s = V/s2, a
popular estimator of o.

Example 1.2. Data 7 = 10,22 = —2,23 = 5,24 = —7, 25 = 4 has a sample mean of
1,
g[10+(—2)+5+(—7) +4]=2,

thus the sample variance is
1 1
s = 5D [(10-2)%+(-2-2+ (5 -2+ (-7-2)2+ (4 - 2)%] = 7[64+16+9+81+4] =435

and the sample standard deviation is

s = v43.5 ~ 6.60.

Computational Formula 1.3.

1
Z k—:c sz——<2xk) = x1+32+ a:f,)——ﬁ(:v1+a:2+---+xn)2.

k

Example 1.4. For the data in Example 1.2, s? equals

! ) [(102+(—2)2+52+(—7)2+42) - %(10+(—2)+5+(—7) +4)2] 3

=T [194 - %(10)2] =43.5.

|

Remarks 1.5. In Definitions 1.1, the dubious reader might ask “Why do we divide by (n — 1)
instead of n?”

—Z(mk—z =- [(xl—x)2+(x2—f)2+---+(xn—5)2]

3|

would be the “average of the squared deviations from the sample mean.”




We will answer the dubious reader in two ways. .

First, {(zx — T)}}_, is not all ordered n tuples {yx}?_;, since ", (zx — Z) can-be shown to be
zero. The set of n tuples we are dealing with have dimension (n — 1), or (n — 1) degrees of freedom,
since we lost a dimension or degree of freedom by the condition that the coordinates add up to zero.

Second, it can be shown that the expected value of ﬁ > ho1(Xk — X)? equals o?; this is
called being an unbiased estimator of o2, which is a good thing.

1.6. Large Sample good news about S. Just as the Central Limit Theorem (see [1] or [6])
asserts that the test statistic %l in (*) above is a reasonably good approximation of Z, for

arbitrary X, for n sufficiently large (n > 30 is traditional), the test statistic '(‘Y—g_ﬁ is a reasonably

7=
good approximation of Z, for arbitrary X, for n a little larger than required for the Central Limit
Theorem; n > 40 is traditional (see horizontal lines (2) and (5) in the tables in Chapter 2 of this
Magnification).

Definitions 1.7. The bad news about using S instead of o in our test statistic (*) above is that,
even with a normal population X,

I (%x)

is no longer normal.

Thus we need a new name for a new probability distribution.

Forn =2,3,4,..., the T random variable, with (n — 1) degrees of freedom, denoted 7},_;, or

Just T', if there is no ambiguity, is the random variable with the distribution of (**), with X normal.
The corresponding distribution is called the ¢ distribution, with (n—1) degrees of freedom

and is denoted ¢, ;. See [3, Definition 11], for the definition of distribution of a random variable.

Historical Remarks 1.8. The ¢ distribution was invented by W.S. Gosset, writing under the
pseudonym “Student.” The “t” stands for “test value.”

The distribution in (*), or, more generally, the central limit theorem, due, in the generality
usually used today, to Laplace, appeared in the late 1700s, while the ¢ distribution appeared only in
the early 1900s. Good ideas take a long time to evolve.

See [7] for both Gosset and Laplace.

Examples 1.9. See the “t Curve Tail Areas” table at the end of this Magnification for probabilities
of the form
P(T,,>t)ZP(T,,Zt)=P(TV<—t)ZP(T,,S—-t),
for t a nonnegative number, » = 1,2,3,.... The Greek letter v, pronounced “new,” is the number
of degrees of freedom.
For example, if T has 10 degrees of freedom, and we want P(T > 1.2) = P(Tjo > 1.2), then
look at the intersection of the column under v = 10 and the row to the right of ¢ = 1.2:

P(Ty0>1.2)=0.129 = P(Tyo > 1.2) = P(Tyo < —1.2) =P(Tyo < —1.2).




Here’s a reproduction of the relevant part of the “t Curve Tail Areas” table.
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Definition 1.10. Critical values for a T random variable are defined exactly as with Z (see [4,
Chapter 2|): For a a positive number less than one, v = 1,2, 3,..., the critical value ta,v, OT just
tq if there is no ambiguity, is the number such that

Pl > s w) =

- gLaACU‘ Hrea

Examples 1.11. For some popular values of «, critical values of T are in another table at the end
of this magnification, labeled “Critical Values for t Distributions” table.

For example, if we wanted the critical value #9.01,26, we would look at the intersection of the
column below a = 0.01 and the column to the right of v = 26, giving us tg.01,, = 2.479.




Here is a reproduction of the relevant part of the “Critical Values for t Distributions” table.
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Strategy 1.12. The random variable T,, can be made arbitrarily close to Z by letting v, the degrees
of freedom, get arbitrarily large. Let’s state this informally by saying that Z is T with oo degrees
of freedom: Z = T..

In particular, we can get many Z probabilities and Z critical values by using T tables with oo
degrees of freedom.

Example 1.13. The critical value 29091 may be obtained from the “t Curve Tail Areas” table
with v = oo:
20.001 = 3.090.

A




2. TABLES for MEAN and PROPORTION SCENARIOS

This chapter puts all relevant information about the most popular confidence interval and hy-
pothesis test constructions in Tables 2.3 through 2.6. In each table, results are indexed by Scenarios
(1)-(12), described in the three left columns of Table 2.3, labeled “SCENARIO,” “PARAMETER,”
and “RANDOM VARIABLE.” The right-most column of Table 2.3 contains the test statistic for
each of Scenarios (1)—(12).

Just as with the special case already discussed in Chapter 1 of this magnification, and in [4] and
[5], summarized in Scenario (1) of Table 2.3, confidence intervals and upper and lower confidence
bounds (in Table 2.4) and hypothesis tests (in Tables 2.5 and 2.6) follow from the test statistic
matching the given scenario.

For example, suppose we wanted to construct a confidence interval for the difference between
two population means y; and o of independent normal random variables X; and X5, with standard
deviations unknown but equal. First we would go to Table 2.3, and scan through the second and
third columns corresponding to different “SCENARIOS,” eventually identifying Scenario (6) as
describing our situation. Then, for our formula needed, we would go to Table 2.4, in the column
under “CONFIDENCE INTERVAL,” in the row that begins with (6); for anything undefined in our
desired formula we would go to (6) in the right-most column of Table 2.3.

Here is a quick summary of how a test statistic leads to statistical inference; we encourage
the reader to compare entries in Tables 2.4, 2.5, and 2.6 to the corresponding (meaning the same
Scenario) entry in Table 2.3.

A confidence interval has the form

(estimator in numerator of test statistic) & (critical value) x (denominator of test statistic).

An upper confidence bound has the form

(estimator in numerator of test statistic) + (critical value) x (denominator of test statistic).

A lower confidence bound has the form

(estimator in numerator of test statistic) — (critical value) x (denominator of test statistic).

See (4, Chapter 3] for confidence intervals and confidence bounds for a special case.

For hypothesis testing, the test statistic, with parameter # replaced by 6, the null hypothesis Hy
value of 0, is either used to get a P-value, as in Table 2.5 (see Theorem 2.2), or compared to a
critical value, as in Table 2.6, to decide whether to reject or not reject the null hypothesis Hy.

See [5, Tables 4.2 and 4.5] for hypothesis testing for a special case.

2.1. Some terminology needed to read Tables 2.3—2.6.

Throughout Table 2.3 (and hence Tables 2.4, 2.5, and 2.6), n is the sample size of the random
sample from the random variable X, 7 is the sample mean, s is the sample standard deviation, y is
the population mean, and o is the population standard deviation. The analogous relationships hold
for ny, X1,Z1, 51, p1, and o1 and no, Xo, To, S2, iz, and 9.

See [4, Chapter 2], or (1], or [3, Examples 15|, or [6] for normal random variables. The other
random variable appearing in the third column from the left in Table 2.3 (the column is labeled
“RANDOM VARIABLE”) is the binomial (see (3, Examples 15]), which we will now define (see [1]
or [6]). For n a natural number and p strictly between zero and one, the binomial(n, p) random
variable counts the number of successes in n independent repetitions of an experiment, with p defined
to be the probability of success at each repetition.




The prototype for binomial(n, p) is counting the number of heads in n flips of a coin, said coin
weighted so that the probability of heads at each flip is p.

Of more interest to us is the following binomial(n, p): let p be the proportion of a population
with a certain specified attribute, n the sample size of a random sample from said population (that
is, we pull out n things in the population), and our binomial random variable counts the number of
things in the sample with said attribute.

This is seen to be binomial when we define our repeated “experiment” to be taking something
from the population, with “success” meaning the thing taken has the specified attribute.

In this setting, the sample proportion p is the proportion of the sample that has the specified
attribute. If z is the number of things with said attribute in a sample of size n, then p = =. The
parameter p is called the population proportion.

The binomial just described, involving sampling, presumes that we either sample with replace-
ment, or sample from a population sufficiently large that sampling without replacement is indistin-
guishable from sampling with replacement. The image here is measuring salt content of teacups of
water taken from the ocean; the ocean does not care if the contents of the teacup are thrown back
into the ocean.

See also [3, Definitions 6], for definitions of mean and proportion, both for samples and popula-
tions.

The abbreviation “df” stands for “degrees of freedom,” as in the definition of the ¢ distribution
in Definitions 1.7.

Note that, in Scenarios (3) and (5), the sample sizes n,n;, and n2 need to be sufficiently large;
this is to make our test statistic be approximated by Z with sufficient accuracy.

For Scenarios (9)—(12) we similarly want our test statistic to be approximated by Z with sufficient
accuracy. Traditional conditions for this accuracy involve values of np, n(1—p), n1p1, n1(1—p1), naps,
and na(1 — p2), but there seems to be disagreement about which values of p to use.

We will adopt the following conventions. In Scenarios (9) and (10) we need np and n(1—p) > 10.
In Scenarios (11) and (12), we need nip1,n1(1 — p1), naps, and na(1 — ps) all > 10.

Scenario (8) is the only scenario with a pair of random variables, X; and X5, that are not
independent. Two random variables X;, X, are paired if they are measured on the same objects
at different times or under different circumstances.

Finally, before presenting Tables 2.3-2.6, we should relate Tables 2.5 and 2.6 with the following
(see [5, 3.1, 3.6, and 4.7]).

Theorem 2.2. Suppose « is a positive number less than one.
In all the scenarios of Tables 2.3-2.6, we reject Hy, at significance level «, if and only if the
P-value of our data is less than or equal to a.




TABLE 2.3: TEST STATISTIC SCENARIOs

SCENARIO PARAMETER RANDOM VARIABLE TEST STATISTIC
(1) I X normal, Xowl 7
o known
2 X arbitrary, 22l 7
(2) p arbitrary =z
n > 40
(3) I X normal, (YVS_‘M =T,
o unknown (n—1)df
(4) (1 — p2) X1, X5 normal and independent, X _Yzz—(“; —H2) _ 7
2y 025

n2
o1 and o2 known

(5) (11 — p2) X1, X independent, (e X’z Qi-w) ., 7z
EL_'_;%

both n; and ny > 40

(6) (1 — p2) X1, X2 normal and independent, g%)-_-{“r‘“) ~ T, (n1 + ng — 2)df,

o1 and o2 unknown, o1 = o S2= m[(nl —1)5% + (n2 — 1)S3]
(7) (u1 — p2) X1, X5 normal and independent, (Y’—_Xz-);(%“—’l ~ T, v df,
aje 59
na
(3:2)
o1 and o2 unknown, o1 # o2 v = largest integer <

[ () + () ]

(8) (m1—p3) X1, X paired, D = (X; — Xa) Pggel =T,
normal,ny =ngs =n (n—1)df
(9) p X binomial(n, p) (Z; I_’)E-) ~Z
(10) P X binomial(n, p) _L_P;(—ll_’m e B
(11) (p1 — p2) X1 binomial(ny, p1), —— —13(23 __‘(pl ==
X binomial(nz, p2) 5(,,1 =) = pl&z-p]) + pz(;m)
12 B X, bi ial(ng, p1), (Pr—pP2)—(Pr1—p2) Z
(12) (p1 —p2) 1, bingmialing, ) V/Ps(1—53) (G +5)
X5 binomial(ng, p2) p3 = ( )1(111-7)3 )
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TABLE 2.4: CONFIDENCE INTERVALS and BOUNDs

For each of (1)-(12), compare to the corresponding scenario in Table 2.3.

SCENARIO 100(1 — ar)% CONF1I- 100(1 — a)% UPPER 100(1 — )% LOWER
DENCE INTERVAL CONFIDENCE BOUND CONFIDENCE BOUND
for parameter for parameter for parameter
(1) Ttzg = T+2am T-zak
(2) T+tzg T+ 2am T— 20—

§+ta7’; T—ta757=l

8
Vn
S
Vn
- _ 2 2 . = 2
(4) [(ml—x;;):tz%\/%’l-—i-% [(z1—12)+za %’;Jr%]
52 a2

(%)

[(Tl—fz)+za h+—3] [(Tl—fa)—za i“rfz}

ny n2

(6) [(T1—Ez):!:t%sp o+ [(El—fz)+tasm/nll+ni2| [(fl—fz)—tasp [+ L

= = 2 2 = - 2 2 . " 2 2
(7 l:(l‘l —Z) le % + %22“] [(1:1 —T3) + ta %11- + %%] [(:1:1 —Tp) — tq % + %?;]
(8) dttsp d+to 2 d—tasg
(9) B ﬁ(ln—ﬁ P+ 2qy/ 2A) p— 24/ 2 1n—13)
(10) More accurate than (9) above, More accurate than (9) above, More accurate than (9) above,
but ugly to solve for p in but ugly to solve for p in but ugly to solve for p in
p—p (p—p) (P—p)
—Zg < i < Zg 7;1—_- > =% — < 2o
(11) [(ﬁl - ﬁ2) = S Z%S(f’l—f’z)] [(jj - ﬁ?) ST zaS(ﬁl—ﬁg)] [(}31 == 132) = ZQS(I;I_Z'M)]

(12) not usually used not usually used not usually used
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TABLE 2.5: HYPOTHESIS TEST P-values

In each of (1)-(12), lower-case “z” or “t” refers to the test statistic in the correspbnding scenario

in Table 2.3.

SCENARIO HYPOTHESIS TEST, HYPOTHESIS TEST,

(1)

(2)

3)

(11)

(12)

one-sided

Ho:p=po
Hy:p<po
P-value = P(Z < z)

Ho:p=po
Hy:p<po
P-value = P(Z < 2)

Ho:p=po
Hqo:p<po
P-value= P(T < t)

Ho : (p1 — p2) = pa
Hg: (p1 — p2) < pa
P-value = P(Z < 2)

Ho : (p1 — p2) = pa
Hg: (p1 — p2) < pa
P-value= P(Z < z)

Ho : (p1 — p2) = pa
Ho: (p1 — p2) < pa
P-value= P(T < t)

Ho : (u1 — p2) = pa
Hy : (p1 — p2) < pa
P-value = P(T < t)

Ho: (u1 — p2) = pa
Hg : (p1 — p2) < pa
P-value= P(T < t)

not usually used

Ho:p=po
Ha :p<po
P-value = P(Z < z)

not usually used

Hy: (p1 —p2) =pa
H,: (p1—p2) <pd
P-value = P(Z < z)

one-sided

Ho:p=po
Hq:p> po
P-value = P(Z > 2)

Ho : p= po
Hg:p> po
P-value= P(Z > z)

Ho: p= po
Ho:p> po
P-value= P(T > t)

Ho : (p1 — p2) = pa
Ho : (p1 — p2) > pa
P-value = P(Z > z)

Ho: (g1 — p2) = pa
Hg : (p1 — p2) > pa
P-value = P(Z > 2)

Ho: (p1 — p2) = pa
Hq i (p1 — p2) > pa
P-value= P(T > t)

Ho : (p1 — p2) = pa
Hy : (p1 — p2) > pa
P-value = P(T > t)

Ho: (p1 — p2) = pa
Hg : (p1 — p2) > pa
P-value= P(T > t)

not usually used

Ho:p=po
H,:p>po
P-value = P(Z > z)

not usually used
Ho: (p1—p2) =pa

H, : (p1—p2) > pd
P-value = P(Z > z2)

HYPOTHESIS TEST,
two-sided

Ho:p= po
Hg:p# wo
P-value = 2P(Z > |z|)

Ho:p=po
Ha U 75 Ho
P-value =2P(Z > |z|)

Ho:p= po
Hq:p# po
P-value = 2P(T > |t|)

Ho : (p1 — p2) = pa
Hy: (p1 — p2) # pa
P-value = 2P(Z > |z|)

Hy : (p1 — p2) = pa
Hg : (u1 — p2) # pa
P-value = 2P(Z > |z|)

Ho : (p1 — p2) = pa
Hy: (p1 — p2) # pa
P-value = 2P(T > |t|)

Ho : (p1 — p2) = pa
Hg @ (p1 — p2) # pa
P-value = 2P (T > |t|)

Ho : (p1 — p2) = pa
Ho : (p1 — p2) # pa
P-value = 2P(T > |t|)
not usually used
Ho:p=po
Ha:p#po
P-value = 2P(Z > |2|)

not usually used

Hy : (p1 — p2) = pd
H, : (p1 —p2) # pa
P-value = 2P(Z > |z|)
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TABLE 2.6: HYPOTHESIS TEST Rejection Region, significance level o

In each of (1)-(12), lower-case “z” or “t” refers to the test statistic in the corresponding scenario

in Table 2.3 and « is a positive number less than one.

SCENARIO HYPOTHESIS TEST, HYPOTHESIS TEST, HYPOTHESIS TEST,

(1)

(2)

3)

(4)

(9)

(10)

(11)

(12)

one-sided

Ho:p=po
Hy:p<po
Reject Hy if z < —2z,

Ho:p=po
Ha:ﬂ<u0
Reject Hy if 2 < —2z,

Ho:p=po
Ho:p<po
Reject Hg if t < —t,

Ho: (p1 — p2) = pa
Hg : (u1 — p2) < pa
Reject Hy if 2 < —2,

Ho : (p1 — p2) = pa
He : (p1 — p2) < pa
Reject Hy if 2 < —2,

Ho: (p1 — p2) = pa
Hg : (1 — p2) < pa
Reject Hy if t < —t,

Ho: (g1 — p2) = pa
Ho : (p1 — p2) < pa
Reject Hy if t < —t,

Ho: (p1 — p2) = pa
Ha : (g1 — p2) < pa
Reject Hyp if t < —t,

not usually used

Hy :p=po
Ha:p<p0
Reject Hy if 2 < —z,

not usually used

Ho : (p1 —p2) =pa
H,: (pr —p2) < pa
Reject Hy if 2 < —2z,

one-sided

Ho:p=po
Ho:p> po
Reject Hy if z > 2,

Ho:p=po
Ho:p> o
Reject Hy if 2z > z,

Ho:p=po
Hy:p> po
Reject Hy if t > t,

Ho: (1 — p2) = pa
Hg : (p1 — p2) > pa
Reject Hy if z > 2z,

Ho: (p1 — p2) = pa
Hg: (p1 — p2) > pa
Reject Hy if z > z,

Ho: (p1 — p2) = pa
Ho @ (p1 — p2) > pa
Reject Ho if t > ta

Ho: (p1 — p2) = pa
Hg: (1 — p2) > pa
Reject Hy if t > t,

Ho: (p1 — p2) = pa
Hy : (p1 — p2) > pa
Reject Hy if t > t,

not usually used
Ho:p=po
H, ‘D> Do
Reject Hy if z > 2,4

not usually used

Ho: (p1 — p2) = pa
H, : (p1 — p2) > pa
Reject Hy if z > z,

two-sided

Ho:p=po
Hq:p# po
Reject Ho if |2| > 2¢

Ho:p=po

Ha CH 75/—“0
Reject Hp if |2| > zg

Ho:p=po

Ha:iu 71:“0
Reject Hy if |t| > t%

Ho : (p1 — p2) = pa
Hq : (p1 — p2) # pa
Reject Hp if |2| > zg

Ho: (p1 — p2) = pa
Hg : (p1 — p2) # pa
Reject Ho if |2| > zg

Ho: (p1 — p2) = pa
Hg: (p1 — p2) # pa
Reject Hy if [t| > te

Ho : (u1 — p2) = pa
Hg: (p1 — p2) # pa
Reject Hy if [t| > tg

Ho : (u1 — p2) = pa
Hg : (p1 — p2) # pa
Reject Hy if |t| > te

not usually used
Ho:p=po
Ha 'p # Po
Reject Hy if |Z| > Zg
not usually used
Ho: (p1 —p2) =pa

H, : (p1 —p2) # pa
Reject Ho if |z| > 2¢
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3. EXAMPLES.

See [5, HW no. 13]. Except in 3(g), assume, in each part in this chapter, that different samples are
independent of each other.

3(a.) “Barking Fools” brand of dog food advertises that it will make dogs faster, on average. Test
this claim, with significance level 0.05, if the average dog runs 30 miles per hour, while a sample of

100 dogs eating “Barking Fools” has an average of 32 miles per hour, standard deviation of 10 miles
per hour.

3(b). “Barking Fools” brand of dog food advertises that it will make dogs faster, on average.
Test this claim, with significance level 0.05, if the average dog runs 30 miles per hour, randomly
chosen dogs eating “Barking Fools” are normally distributed, and a random sample of 12 dogs eating
“Barking Fools” has an average of 32 miles per hour, standard deviation of 10 miles per hour.

3(c). “Barking Fools” brand of dog food advertises that it will make dogs faster, on average. Test
this claim, with significance level 0.05, if the average running speed of 12 randomly chosen dogs that
do not eat “Barking Fools” is 30 miles per hour, the average running speed of 15 randomly chosen
dogs eating “Barking Fools” is 32 miles per hour, randomly chosen dogs that eat “Barking Fools”
are normally distributed, with a standard deviation of 10 miles per hour, while randomly chosen
dogs that do not eat “Barking Fools” are normally distributed, with a standard deviation of 8 miles
per hour.

3(d). “Barking Fools” brand of dog food advertises that it will make dogs faster, on average. Test
this claim, with significance level 0.1, if a random sample of 50 dogs that do not eat “Barking Fools”
has average speed of 30 miles per hour with standard deviation 8 miles per hour, and a random
sample of 100 dogs that eat “Barking Fools” has an average speed of 32 miles per hour, with standard
deviation 10 miles per hour.

3(e). “Barking Fools” brand of dog food advertises that it will make dogs faster, on average. Test
this claim, with significance level 0.05, if a random sample of 5 dogs that do not eat “Barking Fools”
has average speed of 30 miles per hour with standard deviation 8 miles per hour, and a random
sample of 4 dogs that eat “Barking Fools” has an average speed of 32 miles per hour, with standard
deviation 10 miles per hour.

Assume normality of both dogs that eat “Barking Fools” and dogs that do not eat “Barking
Fools.” Assume also that the standard deviation of randomly chosen dogs that eat “Barking Fools”
equals the standard deviation of randomly chosen dogs that do not eat “Barking Fools.”

3(f). “Barking Fools” brand of dog food advertises that it will make dogs faster, on average. Test
this claim, with significance level 0.05, if a sample of 5 dogs that do not eat “Barking Fools” has
average speed of 30 miles per hour with standard deviation 8 miles per hour, and a sample of 4
dogs that eat “Barking Fools” has an average speed of 32 miles per hour, with standard deviation
10 miles per hour.

Assume normality of both dogs that eat “Barking Fools” and dogs that do not eat “Barking
Fools.”

Do not assume that the standard deviation of randomly chosen dogs that eat “Barking Fools”
equals the standard deviation of randomly chosen dogs that do not eat “Barking Fools.”
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3(g). Nine dogs are chosen at random. They are fed “Barking Fools” dog food for the month of
January, then fed only food other than “Barking Fools” dog food for the next month. The following
table shows their running speeds.

Dog 1 2 3 4 5 6 7 8 9
average running speed in January 38 30 30 35 20 35 30 40 30
average running speed in February 40 25 30 25 25 40 30 30 25

Does the data suggest that “Barking Fools” makes dogs faster, on average? Assume normality
where needed.

3(h). Suppose 20 percent of all dogs run faster than 30 miles per hour, while, in a random sample
of 64 dogs that eat “Barking Fools” dog food, 32 dogs run faster than 30 miles per hour. Does this
provide sufficient evidence to conclude, at significance level 0.1, that “Barking Fools” makes dogs
faster?

3(i). Suppose, in a random sample of 100 dogs that don’t eat “Barking Fools,” 20 dogs run faster
than 30 miles per hour, while, in a random sample of 64 dogs that eat “Barking Fools” dog food,
16 dogs run faster than 30 miles per hour. Does this provide sufficient evidence to conclude, at
significance level 0.1, that “Barking Fools” makes dogs faster?

3(j)- In 3(a), find a 95% lower confidence bound for the average running speed of all dogs eating
“Barking Fools” dog food.

3(k). In 3(a), find a 90% confidence interval for the average running speed of all dogs eating
“Barking Fools” dog food.

3(1). In 3(b), find a 95% upper confidence bound for the average running speed of all dogs eating
“Barking Fools” dog food.

3(m). In 3(c), find a 90% confidence interval for the difference between the average running speed of
a dog that eats “Barking Fools” and the average running speed of a dog that does not eat “Barking
Fools.”

3(n). In 3(e), find a 95% lower confidence bound and a 95% upper confidence bound for the
difference between the average running speed of a dog that eats “Barking Fools” and the average
running speed of a dog that does not eat “Barking Fools.”

3(0). In 3(f), find a 95% lower confidence bound and a 95% upper confidence bound for the
difference between the average running speed of a dog that eats “Barking Fools” and the average
running speed of a dog that does not eat “Barking Fools.”

3(p). In 3(h), find a 95% lower confidence bound for the proportion of dogs eating “Barking Fools”
that run faster than 30 miles per hour.

3(q). In 3(i), find a 90% confidence interval for the difference between the proportion of dogs
eating “Barking Fools” that run faster than 30 miles per hour and the proportion of dogs not eating
“Barking Fools” that run faster than 30 miles per hour.
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SOLUTIONS to Examples

In all examples, answers may differ by small amounts, because of different rounding or use of ¢
tables instead of Z tables (see Strategy 1.12).

3(a) Solution. Since we are given the average running speed of all dogs, a relevant parameter, for
Jjudging the effect of “Barking Fools,” is y defined to be the average running speed of dogs eating
“Barking Fools.” Since the sample described measures running speed of 100 dogs eating “Barking
Fools,” this choice of parameter should work.

The advertisement “make dogs faster” we may interpret as u > 30, the average running speed
of all dogs. As is traditional (see [5]), we make this advertising claim H,, the alternative hypothesis.
Thus our hypothesis test is

Hy:p=30, Hg:p> 30.
Here is the information given:
n=100,7F = 32,3 = 10.
Since n > 40, this is Scenario (2) in Table 2.3, so our test statistic is
(32-30)
10 =

/100

2.

We could use Table 2.5 and Theorem 2.2:
P-value = P(Z > 2) = 0.0228 < 0.05 = «,
thus we reject Ho; the data suggests, at significance level 0.05, that “Barking Fools” makes dogs run
faster.
Notice that we would not get this conclusion, at significance level 0.01, since our P-value is

greater than 0.01.
We could also have done this problem with Table 2.6:

z2=2 Z 1:645 = 20.05,

thus we reject Hy, at significance level 0.05. Notice that we would again fail to reject Hy, at signifi-
cance level 0.01, since z = 2 < 2.326 = 2g.01.

3(b) Solution. This is the same as (a), except that the sample size n = 12 < 40, thus we are now
in Scenario (3), so our test statistic is ¢, with (12 — 1) = 11 degrees of freedom:

(32 — 30)
t= """~ 0.69.

Viz
We could get a P-value, using Table 2.5 and Theorem 2.2:
P(Ty1 > 0.69) ~ P(T11 > 0.7) = 0.249 > 0.05 = o,

thus we don’t reject Hp; the data doesn’t suggest, at significance level 0.05, that “Barking Fools”
makes dogs faster.
Or we could use Table 2.6:

t =0.69 < 1.796 = tg.05 (critical value for 11 degrees of freedom),
so we don’t reject Hy.
3(c) Solution. Now we are sampling from two populations, those that eat “Barking Fools,” call
them X;, and those that don’t eat “Barking Fools,” call them X,. More generally, let’s index

information with a subscript of 1 for eating “Barking Fools” and a subscript of 2 for not eating
“Barking Fools.”
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Since our samples measure average running speeds, we choose parameters p; and ps for average
running speeds of X; and X». The claim that “Barking Fools” makes dogs faster becomes (u; —pu2) >
0, and this becomes H,, so that our hypothesis test is

Ho: (p1 —p2) =0, Hg:(u1—p2)>0.

So far we have five possible scenarios from Table 2.3, Scenarios (4)—(8). To choose, we must
translate the information given:

T1 =32,n1 = 15,01 =10,T2 = 30,n9 = 12,09 = 8.
This looks like Scenario(4), thus our test statistic is

m:@ilﬂ&:9~05&

/102 | 82
5t 12

P(Z > 0.58) = 0.2810 > 0.05 = a,

This gives us a P-value of

thus we don’t reject Ho; the data does not support the advertisement.

3(d) Solution. Same hypothesis test as in (c), but different information and a different significance
level:

71 = 32,n;1 = 100, s; = 10,Z2 = 30, n2 = 50, so = 8.
Because of our large n; and ng, we have Scenario(5), thus our test statistic is

= w ~ 1.32.

102 82
100 T 50

Now our P-value is
P(Z >1.32) =0.0934 < 0.1 = a,

so we reject Hy: the data suggests, at significance level 0.1, that the advertisement is correct.
The P-value tells us how close we came to not supporting the advertising claim; any P-value
greater than 0.1 would mean failure for our advertisement, thus our P-value of 0.0934 barely suffices.

3(e) Solution. Same hypothesis test as in (c) and (d), but let’s worry about our current information:
T1=32,n1 =4,8 =10,%3 = 30,12 = 5, 35 = 8, 01 = 0.

That equality of os tells us we are in Scenario (6).
Our test statistic now has a ¢ distribution, with (4 + 5 — 2) = 7 degrees of freedom. Embedded
in our test statistic for Scenario (6) is
1
2
T iy5-2
so that our test statistic is

[(4 —1)10% + (5 — 1)8%] ~ 79,

(32 —-30)

P(T; > 0.34) ~ 0.386 > 0.05 = o,

t= ~ 0.34.

We could use the P-value

thus we don’t reject Hp; data doesn’t suggest “Barking Fools” makes dogs faster.
Alternatively, the critical value ¢ g5, for 7 degrees of freedom, is 1.895, thus

t ~0.34 < 1.895 = 19,05,

implying we don’t reject Hy.
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3(f) Solution. This is the same as (e), except that o1 # 02, so we are thrust into Scenario (7).
This begins with an ugly calculation of v, the degrees of freedom:

2 82 2
(%)
1 (102 182
[ﬁ(T)2 + ﬁ(?)z]
thus we choose v = 5 degrees of freedom, for our ¢ test statistic:
(32—30)—0

102 82
Vo t+5s

P(Ts > 0.3) = 0.388 > 0.05 = o,

so we don’t reject Ho; the data is not sufficient, at significance level 0.05, to support the advertised
claim.

~ 5.7,

t= ~ 0.3,

so our P-value is

3(g) Solution. This is the same hypothesis test as in (c), (d), (e), and (f), but we now have paired
data (see 2.1), thus we are in Scenario (8), which tells us to look at D = (X; — X5), with the
following data.
dog 1 2 3 4 5 6 7 8 9
d -2 5 0 10 -5 -5 0 10 5

We will use the Computational Formula 1.3 to get d and s4:
(di+da+---+dg) =18, (df +d%+---+d2) =304
implies that

18

_ 1 1
d=—=2, s2=- 304 — =(18)%| = 33.5.
. & 8[30 9(8)] 33.5

Thus our test statistic, with (9 — 1) = 8 degrees of freedom, is
(2-0)

33.5
9

P(Ts > 1.0) = 0.173.

When no significance level is given, it is “customary” (an important deal maker in many statistical
circles) to use either 0.01 or 0.05 for a significance level.

Since our P-value is greater than both 0.01 and 0.05, we do not reject Hy; at significance level
0.01 and 0.05, the data does not imply that “Barking Fools” makes dogs run faster.

1=

~ 1.0,

giving us a P-value of

3(h) Solution. Just so we can use the information about the proportion of dogs running faster
than 30 miles per hour, let’s interpret “makes dogs run faster” as producing a higher proportion
that run faster than 30 miles per hour.

Define p to be the proportion of dogs eating “Barking Fools” that run faster than 30 miles per
hour. Then our hypothesis test is

Hy:p=0.2, Hy:p>0.2.

We have 39
2 4 = 2 D — — — R
n==64,r=32,p 6 0.5,
and we are in Scenario (10), with test statistic
z= (05_—02) =62>1.282=2,,
(0.2)(0.8)
64

thus, by Table 2.6, we reject Ho; at significance level 0.1, the data provides sufficient evidence that
“Barking Fools” makes dogs run faster.
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3(i) Solution. As with (h), let’s have “faster” mean a larger proportion that run faster than 30
miles per hour. Letting X; count the number of dogs eating “Barking Fools” that run faster than
30 miles per hour, X> likewise for dogs not eating “Barking Fools,” our hypothesis test is then

Ho:(p1—p2) =0, Hg:(p1—p2)>0.

We have

16 2
ni = 64,71 =16, = — = 0.25,ny = 100, 72 = 20, po = % =

0.2,
64

and we are in Scenario (12).
For our test statistic, we first need

. (16 +20)
=212 0.2
Ps=Tea+100) ~ 02>
so that
(0.25—0.2) — 0

~ 0.75

1/0.22(1 — 0.22)(& + 135)
makes a P-value of
P(Z > 0.75) = 0.2266 > 0.1 = a,

thus we don’t reject Hop; the data does not suggest, at significance level 0.1, that “Barking Fools”
makes dogs faster.

3(j) Solution. From (a) and Table 2.4, Scenario (2), since (1 — @) = 0.95, so that a = 0.05, our
lower confidence bound is

10
32~ zo'os\/TO_O = 32 — 1.645 = 30.355.

3(k) Solution. Again from (a) and Table 2.4, Scenario (2), since (1 — a) = 0.9, so that $ = 0.05,
our confidence interval is

32 & 29,05

10
= 32 £ 1.645 = (30.355, 33.645).
V100 ( )

3(1) Solution. From (b), we want Scenario (3), with 11 degrees of freedom; from (a), we have
a = 0.05, thus we want

10 10
32+ tgos—— = 32 + (1.796)— ~ 37.18.

V12 Vi2

3(m) Solution. From (c) and Table 2.4, Scenario (4), this is
(32 —-30) £ = 102-1-82—2:1:57—( 3.7,7.7)
005\ 75+ 3 = A= (=3.7,7.7).

3(n) Solution. From (e), we are talking about Scenario (6), with 7 degrees of freedom. We also
use calculations from (e):
Lower confidence bound:

1
(32— 30) — to.0ssp/ 7 + 7 = 2~ 1.895/79(0.45) ~ —9.3;

Upper confidence bound:

£alies

1 1
(32 = 30) + t0.058p Z +-=2+ 1.895+/ 79(045) ~ 13.3.

3(o) Solution. From (f), we have v = 5 degrees of freedom, so
to.05 = 2.015.
Use Table 2.4, Scenario (7):




Lower confidence bound:

[102 2
(32 —30) —2.015 % + % =2-124=-104;

Upper confidence bound:
2412.4=14.4.

3(p) Solution. From Scenario (9) in Table 2.4 and the data from (h), we want

0.5(1— 0.5)

=uv.0o— 1. 2 2 ~ U.&.
64 0.5 —1.645 x 0.0625 ~ 0.4

0.5 — 20.05

3(q) Solution. From Scenario (11) in Table 2.4 and the data from (i), we want

0.25(1-0.25)  0.2(1-0.2)
64 100

(0.25—-0.2) + 1.645\/

~0.05 +0.11 = (—0.06, 0.16).

19
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HOMEWORK
Except for paired data, assume in each problem that pairs of random variables are independent.

1. Compare with [5, HW no. 16], and the Examples in Chapter 3 of this magnification.

(a). A lotion called SkinTemp advertises that its use will change people’s skin temperature, on
average. Test this advertisement, at significance level 0.01, if the average skin temperature of 100
people using SkinTemp is 97 degrees, with a standard deviation of 5 degrees. Assume that the skin
temperature of a randomly chosen person not using SkinTemp has a mean of 99 degrees.

(b). A lotion called SkinTemp advertises that its use will change people’s skin temperature, on
average. Test this advertisement, at significance level 0.01, if the average skin temperature of 9
people using SkinTemp is 97 degrees, with a standard deviation of 5 degrees. Assume that the
skin temperature of a randomly chosen person not using SkinTemp has a mean of 99 degrees. Also
assume that the skin temperature of people using SkinTemp is normally distributed.

(c). A lotion called SkinTemp advertises that its use will change people’s skin temperature, on
average. Test this advertisement, at significance level 0.01, if the average skin temperature of
9 people using SkinTemp is 97 degrees and the average skin temperature of 6 people not using
SkinTemp is 99 degrees.

Assume that the skin temperature of people using SkinTemp is normally distributed with a
standard deviation of 5 degrees and the skin temperature of people not using SkinTemp is normally
distributed with a standard deviation of 2 degrees.

(d). A lotion called SkinTemp advertises that its use will change people’s skin temperature, on
average. Test this advertisement, at significance level 0.01, if the average skin temperature of 50
people using SkinTemp is 97 degrees, with a standard deviation of 5 and the average skin temperature
of 100 people not using SkinTemp is 99 degrees, with a standard deviation of 2.

(e). A lotion called SkinTemp advertises that its use will change people’s skin temperature, on
average. Test this advertisement, at significance level 0.01, if the average skin temperature of 9 people
using SkinTemp is 97 degrees, with a standard deviation of 5 and the average skin temperature of
6 people not using SkinTemp is 99 degrees, with a standard deviation of 2.

Assume normality both of people who use SkinTemp and people who do not Also assume that
the standard deviation of randomly chosen people using SkinTemp equals the standard deviation of
randomly chosen people not using SkinTemp.

(f). A lotion called SkinTemp advertises that its use will change people’s skin temperature, on
average. Test this advertisement, at significance level 0.01, if the average skin temperature of 9 people
using SkinTemp is 97 degrees, with a standard deviation of 5 and the average skin temperature of
6 people not using SkinTemp is 99 degrees, with a standard deviation of 2.

Assume normality both of people who use SkinTemp and people who do not. Do not assume that
the standard deviation of randomly chosen people using SkinTemp equals the standard deviation of
randomly chosen people not using SkinTemp.

(g).- A lotion called SkinTemp advertises that its use will change people’s skin temperature, on
average. Test this advertisement, at significance level 0.01, if four people use SkinTemp for a week
in June and don’t use SkinTemp for a week a year later, producing the following skin temperatures.

Person 1 2 3 4
skin temperature in earlier year 100 99 98 99
skin temperature in subsequent year 98 99 97 99

Assume normality where needed.
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(h). A lotion called SkinTemp advertises that its use will change people’s skin temperature, on
average. Test this advertisement, at significance level 0.01, if 20 percent of all people who do not

use SkinTemp have skin temperatures above 98, while 50 percent of 100 people who use SkinTemp
have skin temperatures above 98.

(i). A lotion called SkinTemp advertises that its use will change people’s skin temperature, on
average. Test this advertisement, at significance level 0.01, if 50 percent of 100 people who use
SkinTemp have skin temperatures above 98, while 20 percent of 80 people who do not use SkinTemp
have skin temperatures above 98.

(i)- In (b), find a 99% confidence interval for the average skin temperature of people using SkinTemp.

(k). In (b), find a 99% upper confidence bound for the average skin temperature of people using
SkinTemp.

(1). In (d), find a 99% confidence interval for the difference between the average skin temperature
of people using SkinTemp and the average skin temperature of people not using SkinTemp.

(m). In (h), find a 99% confidence interval for the proportion of people using SkinTemp that have
skin temperatures above 98 degrees.

(n). In (h), find a 99% lower confidence bound for the proportion of people using SkinTemp that
have skin temperatures above 98 degrees.

(0). In (i), find a 99% confidence interval for the difference between the proportion of people using
SkinTemp that have skin temperatures above 98 degrees and the proportion of people not using
SkinTemp that have skin temperatures above 98 degrees.

2. 100 ephemerabugs have an average lifetime of 0.81 days with standard deviation of 0.34 days.
Calculate a 99% confidence interval for the true average lifetime of all ephemrabugs. Also get a 99%
upper confidence bound and 99% lower confidence bound for this average.

3. SAME as no. 2, except replace 99% with 90%.

4. Use the data in no. 2 to test, at significance level 0.01, the claim that the average lifetime of all
ephemera bugs is less than 0.87 days.

5. SAME as no. 4, except at significance level 0.1.

6. Out of 500 people sampled, 70 are bald. Get a 99.9% lower confidence bound for the proportion
of all people that are bald.

7. Use the data in no. 6 to test, at significance 0.001, the assertion that more than 5% of all people
are bald.

8. Out of 400 children, 15 percent are overexcited. Get a 95% confidence interval for the proportion
of all children who are overexcited.

9. In no. 8, is there compelling evidence, at significance level 5%, to believe that the proportion of
all children who are overexcited is different than 12 percent?

10. Assume sugar content in a randomly chosen “Big Gulp (BG)” is normal. Your younger brother
buys five BGs and measures an average sugar content of 3 grams, standard deviation of 0.6 grams.
Get a 90% confidence interval for the average sugar content of all BGs.

11. Suppose you have 25 slimemolds in your kitchen. Their average weight is 4 ounces, their
standard deviation 1.5 ounces. Assume slimemold weight is normally distributed.

Estimate the true average weight of all slimemolds in a way that conveys information about
precision and reliability (this means confidence interval, either 99 or 95 percent).
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12. The drying time of a randomly chosen rag is normal, with standard deviation 10 minutes. Test
the claim that the average drying time of all rags is more than 75 minutes, if the avera.ge drying
time for a sample of 16 rags is 80 minutes.

Get a P-value.

13. SAME as no. 12, except the standard deviation is of the sample.

14. Suppose the recommended Vitamin Z per day is 15 mg. In a sample of 100 people, the daily
Vitamin Z per day averaged 13 mg., with a standard deviation of 8 mg. Does this data indicate
that daily Vitamin Z intake (on average) is significantly different than recommended?

15. In a sample of 400 wolverines, 24 of them are rabid. Does this provide compelling evidence, at
significance level 0.05, that fewer than 10% of all wolverines are rabid?

16. Among 60 Martians we've captured, 15 of them have more than five fingers on each hand. Can
we conclude, at significance level 0.1, that more than 20 percent of all Martians have more than five
fingers on each hand?

17. Suppose the heights of ten randomly chosen Earthlings adds up to 25, while the heights of seven
Martians adds up to 14.

Assume that heights of randomly chosen Earthlings is normally distributed with a standard
deviation of 2, and the heights of randomly chosen Martians is normally distributed with a standard
deviation of 5.

(a) Find a 90% confidence interval for the difference, in average height, between Earthlings and
Martians.

(b) Test, at significance level 0.1, the claim that Earthlings are taller than Martians, on average.

18. SAME as no. 17, except the standard deviations refer to the samples rather than the population,
with the population standard deviations assumed to be equal.

19. Suppose, for terminology as in Table 2.3, n; = 6,no = 12,7, = 8,73 = 6,5; = 3, and s, = 5.
Assume normality where needed.

(a) Get a 99% confidence interval for (u; — u2).
(b) Test Ho : (1 — p2) = (—1),Hq : (11 — p2) > (—1) at significance level 0.1.

20. A wonder drug claims to make you stronger—more specifically, able to military press at least
five pounds more (on average)—10 minutes after taking it.

Letting X5 = number of pounds you can military press before taking drug, X; = same 10
minutes after taking drug, test the claim with the following data for nine people:

person 1 2 3 4 5 6 7 8 9
1 55.85 58.84 62.05 55.74 50.89 71.05 55.01 54.96 57.47
o 48.23 50.84 52.96 49.68 49.50 54.98 46.61 46.07 54.59

Assume normality of D = (X; — X5).

21. Brand X detergent left grease stains on 15 out of 100 shirts washed, while Brand Y left grease
stains on 24 out of 400.

(a) Find a 95% confidence interval for the difference between the proportion of all shirts left with
grease stains by X and the proportion of all shirts left with grease stains by Y.

(b) At significance level 0.05, does the data imply that Brand X leaves a higher proportion of grease
stains than Brand Y'?
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22. A survey states that 55 out of 100 children would like a candy store built, while 210 of 400
adults would like a candy store built. Is there a significant difference between the proportion of
children and the proportion of adults who would like a candy store built?

23. Here are the number of calories of randomly selected “SweetStuff” (SS) candies:
12,11,9,12,16.

The manufacturer of SS claims the average number of calories among all SS is less than 14. Test
this claim, at significance level 0.1, under the assumption that SS calories is normally distributed.

24. The average mass of 10 wombats in Tasmania is 80 pounds with a standard deviation of 4, and
the average mass of 20 wombats in mainland Australia is 75 pounds with a standard deviation of 5.
Find a 99% confidence interval for the difference between the average weight of wombats in
Tasmania and the average weight of wombats in mainland Australia.
Assume the distributions of wombats in Tasmania and wombats in mainland Australia are
normal, with equal standard deviations.

25. 15 out of 25 fish eaters solve a certain puzzle, while only 10 out of 20 non-fish eaters solve this
puzzle. Does this data suggest, at significance level 0.05, that fish makes you smarter?

26. Suppose a sample of 100 Neptunian scumslugs has a mean length of 6.2 inches and a standard
deviation of 2 inches, while a sample of 200 Plutonian scumslugs has a mean length of 5.7 inches
and a standard deviation of 3 inches.

(a) Test the assertion that the average length of all Neptunian scumslugs is different than the average
length of all Plutonian scumslugs, at significance level 0.01.

(b) Find a 99% confidence interval for the difference between the average length of all Neptunian
scumslugs and the average length of all Plutonian scumslugs.
Assume normality where needed.

27. Eight randomly chosen fish eaters have an average score of 65, while ten randomly chosen
non-fish eaters have an average score of 60. Does this data suggest that fish makes you smarter?
Assume that the standard deviation of all fish eater scores is 3 and the standard deviation of all
non-fish eater scores is 5.

Assume normality where needed and use o = 0.01.

28. I collect 400 wolverines at random, and find that 28 of them are rabid.
(a) Find a 95% upper confidence bound for the proportion of all wolverines that are rabid.
(b) Test, at significance level 0.05, the theory that fewer than 10 percent of all wolverines are rabid.

29. Suppose 30% of all people like onions on their hamburgers. Among a sample of 100 college
students, I find that 42 of them like onions on their hamburgers. Does this provide strong evidence
that the proportion of all college students who like onions on their hamburgers exceeds the proportion
for all people?

30. Data on the cholesterol levels of 6 wolverines give an average of 90 and a standard deviation of
12. Find a 95% percent confidence interval for the average cholesterol level of all wolverines. Assume
normality of cholesterol levels.

31. Here are the test scores of 5 Martians: 114, 100, 104, 129, 153. Assume Martian test scores
throughout the solar system are normally distributed, with a standard deviation of 15. Is there
evidence that the mean test score of all Martians differs from 100?

32. Here are the weights, in grams, of 9 wolverines:
31, 31, 43, 40, 20, 35, 30, 30, 10.
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Assume that the weight of a randomly chosen wolverine is normally distributed, with a standard
deviation of 7. Give a 99% confidence interval for the average weight of all wolverines

33. The lengths of five scumslugs, in inches, is
56, 68, 52,24, 50.
Assuming normality, what is a 99% confidence interval for the average length of all scumslugs?
34. The worldwide average score on a math exam is 70. Sixteen randomly chosen fish eaters have

an average score of 85, with a standard deviation of 3. Does this data suggest that fish makes you
smarter? Assume normality where needed and use o = 0.01.
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HOMEWORK SOLUTIONS

In all examples, answers may differ by small amounts, because of different rouﬁding or use of t
tables instead of Z tables (see Strategy 1.12).

1. Let’s write “ST” for “SkinTemp.”

(a). Let p be the average skin temperature of all people using ST. Our hypothesis test is
Ho:p=99, Hy:p#99.
Here’s our data:
T =97, =5,n = 100,
thus we are in Scenario (2), with test stat

97 — 99
= 5 = —4,

/100

so that
|z| —4>2576=z0005:z%,

implying (Table 2.6) that we reject Ho; the data suggests, at s1gmﬁcance level 0.01, that ST changes
people’s skin temperature, on average.

(b). This is the same as (a), except that n = 9 and we assume normality. We are now in Scenario

(3), with test stat

97 — 99
5
Vo

where t has 8 degrees of freedom, implying that tg.g95 = 3.355, so that

|t] = 1.2 < 3.355 = tg.005 = tg,

thus Table 2.6 says we do not reject Hp; the data does not suggest, at significance level 0.01, that
ST changes people’s skin temperature, on average.
OR, we could’ve looked at the P-value

2P(Ts > 1.2) =2 x 0.132 = 0.264 > 0.01 = q,
thus (see Table 2.5) we don’t reject Hy.

t= = —1.2,

(c). Now we have samples from two populations; let’s denote X; for people using ST, X for people
not using ST. To test different population means, we set up the hypothesis test

Ho: (p1 — p2) =0, Hg: (u1 — p2) #0.
Here’s our data:

T1 =97,01=5,n1=9,T2 = 99,00 = 2,ny = 6.
Also X; and X5 are normal. We are in Scenario (4), so we look at the test stat
_(97-99)-0

/52 | 22
Tt%

|Z| =1.08 < 2.576 = 29,905 = Zg,

meaning we don’t reject Ho; the data does not imply, at significance level 0.01, that ST changes
people’s skin temperatures, on average.
OR, with P-values,

~ —1.08

so that

P-value = 2P(Z > 1.08) = 2 x 0.1401 > 0.01 = a,

so we don’t reject Hp.
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(d). This is the same as (c), except we have s; = 5 instead of o1 = 5, and s, = 2 instead of g5 = 2,
and ny = 50, ng = 100.
Those values of ny and ny put us in Scenario (5), with test stat

L (97—-99) -0
2 22
Vi + i
We could use rejection regions (Table 2.6):
|z| = 2.72 > 2.576 = 29,005 = Zg,

so we reject Ho; the data suggests, at significance level 0.01, that ST changes people’s skin temper-
ature, on average.

OR we could use P-values (Table 2.5):
P-value = 2P(Z > 2.72) = 2 x 0.0033 = 0.0066 < 0.01,

~ —2.72.

thus we reject Hy.

(e). This is the same as (d), except for different sample sizes n; = 9 and ny = 6; also we are
told that X; and X3, from (c), are normal with equal standard deviations o; = o5. This puts us in
Scenario (6), where we need

1
Our test statistic is i 9 _ 0
= 0729 -0 40,

V16.9,/% + %
with (946 —2) = 13 degrees of freedom, thus ¢ go5 = 3.012, so that |t| < tg.00s, implying (see Table

2.6) that we do not reject Hy; the data does not suggest, at significance level 0.01, the truth of the
advertised claim.

(f). This is the same as (e), except we do not assume oy = g5. This forces us into Scenario (7),
with test stat
(97 —99) -0

53 28
Vot%

But the degrees of freedom in this scenario require calculating

t = ~ —1.08.

5%, 2352
o _+_ i 1
1 5(29 : )1 22\5] 11.3,
(D& + (&%)
so that our ¢ distribution has 11 degrees of freedom, implying that tg ggs = 3.106, and we have the
same conclusion as in (e).

(g)- This is paired data, so we look at D = (X; — X») in Scenario (8):

Person 1 2 3 4

71 = skin temperature in earlier year 100 99 98 99
T2 = skin temperature in subsequent year 98 99 97 99
d= (.’L‘1 = :Ez) 2 0 | 0

Let’s use the Computational Formula 1.3 to get d and sg4:
(d1 +d2+d3+d4) =3; (df+d§+d§+d§) =35,

- 3 1
d=7=0.75 s2== [5 - (Z)(32)] ~ 0.92.

Our hypothesis test is
Ho:pup =0, Hg:pup #0,
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with test stat
_0.75-0

V/0.92
vz
We have (4 — 1) = 3 degrees of freedom, so tg.005 = 5.84, thus |t| < tg.005, wWith the same negative
result as in (e) and (f).

t

~ 1.56;

(h). Here we are comparing proportions, one of them population, one of them sample . Let p be the
proportion of all ST users who have skin temperatures above 98. The claim here is that ST users
are different than people who do not use ST; this means p # 0.2, the proportion of all people not
using ST who have skin temperatures above 98. Thus our hypothesis test is

Hy:p=0.2, H,:p#0.2.

We are in Scenario (10), with

50
— 1 0’ — ’ D - — =0Vu. Bl
n =100,z = 50, p 100 0.5
so our test stat is 0.5
5—0.2
2= ——="17.5> 2.576 = 2,005,
0.2(1-0.2)
100

thus we reject Hp; at significance level 0.01, the data suggests that ST changes people’s skin tem-
perature, on average.

(i). Now we have data (sample proportions) from both ST users and non-ST users. Using the
subscript 1 for ST users and 2 for non-ST users, we have

50 16
=1 = p1 = — = 0. = = Do — — —
ny = 100, z1 = 50, p; 100 0.5,n2 = 80,2 = 16, po =

Denote by p; the proportion of all ST users with skin temperatures above 98, by p, the proportion
of all non-ST users with skin temperatures above 98, then our hypothesis test is

Ho: (p1 —p2) =0, Ho:(p1—p2) #0,
and we are in Scenario (12), thus we need

. 50+16
P3 = 100+ 80

0.2.

~ 0.367,

and our test stat is
(0.5—-0.2)—0

\/0.367(1 — 0.367)(1h5 + )

so that, as in (h), we have the same conclusion as in (h).

z

~ 4.15 > 2.576 = zg.005

(§). From the data in the solution of (b), using tg.005 = 3.355 (8 degrees of freedom), our interval is

5
97 + 3.355— = 97 + 5.59 = (91.41, 102.59).
7 ( )

(k). Now we need tg.01 = 2.896 (still 8 degrees of freedom), so our upper bound is

5
97 4 2.896— ~ 101.8.
V9

(1). We are in Scenario (5), Table 2.4, so we need 2 o5 = 2.576; using data from (d), our interval is

52 22
97 — 99) +2.5764/ — + —— ~ —2 + 1.89 = (—3.89, —0.11).
( ) =0 100 89 = ( ; )
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(m). From Scenario (9) and (h), with 29905 = 2.576:

0.5(1 — 0.5)

LBi2;
0.5 576 100

~ 0.5+ 0.13 = (0.37,0.63).

(n). Again from Scenario (9) and (h), now with 2 o; = 2.326:

0.5(1 — 0.5)
100

0.5 —2.326 ~ 0.3837.

(0). From Scenario (11) and (i), with zg.go5 = 2.576:

05(1-05) , 0.2(1-0.2)
100 80

(0.5—0.2) + 2.576\/ ~0.3+0.173 = (0.127,0.473).

2. This is Scenario (2), Table 2.4, with
T =0.81,5=0.34,n =100, (1 — o) = 0.99,

so that z, = zg9.01 = 2.326 and zg = zp.005 = 2.576.

The confidence interval is

0.34
0.81 £ 2.576(——) = 0.81 £+ 0.088 = (0.722, 0.898).
oo’ ( )
The upper confidence bound is
0.34
0.81 4 2.326(——) = 0.889.
(\/10_0)

The lower confidence bound is

0.81 — 2.326(%) = 0.731.

3. Now (1 — a) = 0.9, thus 24 = 20.; = 1.282 and zg = 20,05 = 1.645.

The confidence interval is

0.34
0.81 £1.645(———=) = (0.754,0.866).
(o) = )
The upper confidence bound is
0.34
0.81 + 1.282(——) = 0.854.
i
The lower confidence bound is
0.34
0.81 — 1.282(——=) = 0.766.
i

4. We are still in Scenario (2), but now we’d like Table 2.5.
Let p be average lifetime of all ephemera bugs. Our hypothesis test is

Hy:pn=0.87, Hg:p<0.87,
with data (from no. 2)
T = 0.81,s = 0.34,n = 100,

so that our test stat is

0.81 —0.87

V100
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producing a P-value of
P(Z < -1.76) = P(Z > 1.76) = 0.0392 > 0.01 = o,

thus we do not reject Ho; data is insufficient to conclude, at significance level 0.01, that the average
lifetime of these bugs is less than 0.87 days.

5. Everything except «, the significance level, is the same as no. 4; now compare the P-value of
0.0392 to o = 0.1; since the P-value is less than or equal to a, we reject Hy; data is sufficient to
conclude, at significance level 0.1, that the average lifetime of these bugs is less than 0.87 days.

6. Let p be the proportion we crave. This is Scenario (9), in Table 2.4, with data
.70 B
z ="T0,n=500,p = 500 = 0.14, (1 — a) = 0.999,

so that z,, = 29,001 = 3.090, and our lower confidence bound is

0.14(1 — 0.14)
14-3. ==e o | o 0003,
0.14 3090( - ) 0.09

7. With p as in no. 6, our hypothesis test is
Hy:p=0.05, Hy:p> 0.05.
This is Scenario (10); I'll use Table 2.6. Our test stat is (using data from no. 6)
.14 - 0.
z= w =9.23 > 3.090 = 29001 = 2oy
0.05(1—0.05)
500

thus we reject Ho; the data suggests, at significance level 0.001, that more than five percent of people
are bald.

8. Confidence interval for proportion (in this case p is the proportion of all children who are
overexcited) is Scenario (9), Table 2.4. Our data is

2 = 0.0375,

with (1 —a) = 0.95, so that zg = 1.96, giving us

0.0375(1 — 0.0375)
400

0.0375 = 1.96\/ ~ 0.0375 + 0.0186 = (0.0189, 0.0561).

9. Let p be as in no. 8. The claim we are testing is p # 0.12, so here is our hypothesis test:
Ho:p=0.12, H,:p#0.12.

(Single) proportion hypothesis test is Scenario (10), Table 2.5 or 2.6.
From no. 8, n =400 and p = 0.0375, thus our test stat is
- (0.0375 — 0.12)

(0.12)(0.88)

400
this is too large to get a P-value, so I'll use Table 2.6, with oo = 0.05:
|z| = 5.078 > 1.96 = 29,025 = 2

thus we reject Ho; at significance level 0.05, there is compelling evidence that the proportion of all
children who are overexcited is not 12 percent.

~ —5.078;

R

10. This is Scenario (3), Table 2.4, for u the average sugar content of all BGs:
n=>57=3,5s=0.6,(1—a)=0.9,
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so that, with (5 — 1) = 4 degrees of freedom, tg =to.05 = 2.132, and our confidence interval is

0.6
3+2132( —= ) ~3+0.572 = (2.428,3.572).
<\/5) ( )

11. Again Scenario (3), Table 2.4. Let’s do a 99% confidence interval, so that, with 24 degrees of
freedom,

1.
T+ t0_005% =4+ 2.797% =4+ 0.8391 = (3.1609, 4.8391).

12. This is Scenario (1), and, since we're instructed to use a P-value, we’ll use Table 2.5. As usual,
H, is our “claim” being tested, so here is our hypothesis test:

Ho:pu=175, H,:u>"175.
Our data is
n =16, = 80,0 = 10,
so our test stat is

80— 75
z2=—5— =2

V16

so our P-value is
P(Z > 2) =0.0228.

Since no significance level a is given, we “should” (social convention) use o = 0.01 or 0.05.

At significance level 0.01, we do not reject Hp, since the P-value is greater than 0.01, while at
significance level 0.05, we do reject Hy, since the P-value is less than or equal to 0.05.

In summary: at significance level 0.01, the data is not sufficient to support the claim, but at
significance level 0.05, the data is sufficient to support the claim.

13. Inno. 12, o = 10 changes to s = 10, and Z changes to ¢, with (16 — 1) = 15 degrees of freedom,
thus our test stat is
80— 175
t=—— =2
V16
and our P-value is now
P(T15 > 2) = 0.032,

and we get the same conclusions as in no. 12.

14. This is Scenario (2), since the sample size n = 100, with parameter p equal to average daily
intake of Vitamin Z, testing p # 15; that’ll be the hypothesis test

Ho:pu=15, H,:pu#15,
with data
n =100,z = 13,s = 8,
giving us a test stat of

13-1
<L = 38 5:-2.5

V100
Once again, no significance level « is given, so we should use a = 0.01 or 0.05, which motivates us
to use P-values (Table 2.5), because a P-value may be used immediately for any significance level:

P-value = 2P(Z > | — 2.5|) = 2(0.0062) = 0.0124.

At significance level 0.01, since P-value is greater than 0.01, we do not reject Hy: data does not
indicate the intake is significantly different than recommended.

At significance level 0.05, since P-value is less than or equal to 0.05, we reject Hy: data does
indicate the intake is significantly different than recommended.
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15. The parameter here is p defined to be the proportion of all wolverines that are rabid. For a

hypothesis test (Table 2.5 or 2.6), we use Scenario (10), with data
24

n =400,z =24,p = m=0.06.

Since we want evidence for p < 0.1, our hypothesis test is
Hy:p=0.1, H,:p < 0.1,
with test stat

producing a P-value of
P(Z < —2.67) = P(Z > 2.67) = 0.0038 < 0.05 = a,

thus we reject Ho; at significance level 0.05, there is compelling evidence that fewer than ten percent
of all wolverines are rabid.

16. Our parameter is again proportion, mainly p defined to be the proportion of Martians that have
more than five fingers on each hand. As in no. 15, our hypothesis test is

Hy:p=0.2, H,:p > 0.2,
with

1
n =60,z =15,p= £ =0.25,

leading to (see Scenario (10)) test stat

25— 0.2
2= et ~ 0.97,
0.2(1-0.2

producing a P-value
P(Z > 0.97) = 0.166 > 0.1 = a,

so we don’t reject Hp; no, we cannot conclude, at significance level 0.1, that more than 20 percent
of Martians have more than five fingers on each hand.

17. This problem involves a difference in population means, (u; — p2), where I am choosing the
subscript 1 for Earthling height and 2 for Martian height. Since we are given the standard deviations
of both (all) Earthlings and Martians, we are in Scenario (4) of Table 2.3.

Data for Earthlings:
25

i =10,%] = 1—0 = 2.5,01 = 2.
Data for Martians: >
ne =7,Ts = 7 = 2. &9 =5,

(a) From Table 2.4 and Scenario (4), we need zg = zo.05 = 1.645, then our confidence interval is

2 2
(2.5—2) + 1.645\/%0 + 57 ~ 0.5+ 3.28 = (—2.78, 3.78).

(b)“Earthlings taller than Martians” is (u; — p2) > 0, so make that H,, giving us the following
hypothesis test:

Ho: (p1 —p2) =0 Hg:(p1 — p2) > 0.
Our test stat in Scenario (4) is

5-2)—
= 25220 405

giving us a P-value of
P(Z > 0.25) = 0.4013 > 0.1 = q,
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so we don’t reject Ho; data does not suggest, at significance level 0.1, that Earthlings are taller than
Martians.

18. Now we are in Scenario (6), with everything as in no. 18, except s; rather than o, equals 2, s,
rather than o, equals 5, and o1 = 0.

Instead of 29.05, we need, with (10 + 7 — 2) = 15 degrees of freedom, tg.95 = 1.753. Scenario (6)
also requires
5 1

%= 0779 [(10 —1)2% + (7 — 1)5%] = 12.4.

(a) (2.56—2) £1.753v12.4, /35 + 1 ~ 0.5+ 3.04 = (—2.54, 3.54).

(b) The test stat, with 15 degrees of freedom, is
(25—2)—0
V124,/& +1

t= ~ 0.288,

so our P-value is approximately
P(T15 b 0.3) = 0.384,
and we reach the same conclusion as in no. 17.

19. Since there is no mention of oy versus o2, we must assume o; # o, putting us into Scenario
(7).
We need v, the degrees of freedom, from the terrible formula in Scenario (7):

2 2
&+ %)
32 2
[(eil)(?)2 + (121—1)(?_2)2]

thus we choose v = 15 degrees of freedom.

~ 15.2,

(a) (1 — @) = 0.99 implies that ta = #0.005s = 2.947, so our confidence interval is
32 2

(8—6)£2.947Y/ =+ i’—z ~2+5.58 = (—3.58, 7.58).

(b) Our test stat, still with 15 degrees of freedom, is
(8 —6) —(—1)

32 52
Ve T 1z

P(Ty5 > 1.6) = 0.065 < 0.1 = a,
thus we reject Ho; at significance level 0.1, the data suggests that (u; — pu2) > (—1).

t: ~ 16,

causing a P-value of

20. This is paired data, so we are forced into Scenario (8). First, we need to put the data in terms
of D = (X] = X2)

person 1 2 3 4 5 6 7 8 9
d=(z1—z2) 7.62 8 9.09 6.06 1.39 16.07 8.4 8.89 2.88

We need d and s4; we will use the Computational Formula 1.3.
(di+do+---+dg) =(7.62+8+9.09+...) =684

and
(d+d3+-- +d3) = (7.622 + 82+ 9.09% + ...) = 659.48,
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thus ahd
d= —9'—:7.6 and s; =

1
48 — —(68.4)%| = 17.455.
©-1) 659 9(6 ) ] 55 _
We are testing
H(Jiﬂd=5, Hailld>5,
with test stat
765

~ /i7.455
V)

thus, since we have (9 — 1) = 8 degrees of freedom, our P-value is
P(Ts > 1.9) = 0.047.

Once again we were not given sufficient information for an unambiguous answer; mainly, we weren’t
given a signficance level a. The socially correct statistician knows what to do: choose o = 0.01 or
0.05.

~ 1.9,

Since the P-value is greater than 0.01, at significance level 0.01 the claim is not supported by
the data.

Since the P-value is less than or equal to 0.05, at significance level 0.05 the claim is supported
by the data.

21. This is concerned with the difference of two proportions, (p1 — p2); let’s have the subscript 1
for Brand X, the subscript 2 for Brand Y.

Here’s our data:

. 15 . 24
n1 =100,z =15,p1 = 100 = 0.15,n2 =400, z5 = 24, po = 200 = 0.06.

(a) For confidence intervals for (p; — p2), we use Scenario (11) in Table 2.4. This means we need

. \/0.15(1 —0.15) . 0.06(1 - 0.06)
PR 100 400
Since (1 — a) = 0.95, zg = zp.025 = 1.96, thus our interval is

(0.15 — 0.06) = (1.96)(0.038) ~ 0.09 = 0.074 = (0.016, 0.164).

~ 0.038.

(b) For hypothesis tests for (p1—p2), we use Scenario (12). A “higher proportion” means (p; —p2) > 0,
so here is our hypothesis test:

Hy:(p1—p2) =0, Hg:(p1—p2)>0.
For our test stat, we first need
. (15+24)

= — 0.078,
P3 = 1100 1 200)

giving us
(0.15—0.06) — 0

Z =
\/0.078(1 — 0.078) (k5 + <&5)

~ 3.00,

for a P-value
P(Z > 3.0) =0.0013 < 0.05 = «,

thus we reject Ho; the data implies, at signficance level 0.05, that Brand X leaves a higher proportion
of stains than Brand Y.

22. Again a difference of proportions for a hypothesis test; that means Scenario (12). Here’s the
data, with children getting the subscript 1, adults subscript 2:

21
? =0.55,n2 = 400, z2 = 210, po = = = 0.525.

n1=100,l‘1=55,p1=-170 200
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“Significant difference” between proportions means (p; — p2) # 0, so our hypothesis test is

Ho:(p1—p2) =0, Ha:(p1—p2)#0.
We need ( )
) 55 + 210

3~ (100 + 400) 053,

so that our test stat is
(0.55 —0.525) — 0

/0-53(1 — 0.53) (&5 + 730)

~ 0.45,

with a P-value of
2P(Z > ]0.45]) = 0.6528,

much larger than either of the fashionable signficances 0.01 or 0.05, so we don’t reject Hy; there is
not a significant difference between children and adults, regarding a candy store.
Alternatively, if we used Table 2.6 instead of 2.5, we would compare

|z| ~ 0.45 < zg,
for a equal to 0.01 or 0.05, implying that we don’t reject Hy.
23. We're testing a statement about a single average, so our parameter is , as in Scenarios (1)—(3).
Normality is assumed, with sample size n = 5 < 40, so we are in Scenario (3), with (5 — 1) = 4

degrees of freedom.
With p = average number of calories of SS, our hypothesis test is

Ho:p=14, H,:pu< 14.
We'll use Computational Formula 1.3 to get T and s:

(124+11+9+12+16) = 60, (1224112 + 92 + 122 + 162) = 746,

)
_ 60 2 1 2|
T = 5 =12, 8= G-1D [746 5(60) ] =16.5.
Our test stat, with (5 — 1) = 4 degrees of freedom, is
b= g4 ~ —1.75,

6.5
5

producing a P-value of
P(Ty < —1.75) = P(Ty > 1.75) ~ P(T, > 1.8) = 0.073 < 0.1,

thus we reject Hy; at significance level 0.1, the claim is supported by the data.

24. We are testing a difference between averages, which we denote as (u; — u2); let’s have subscript
1 for Tasmanian weights and subscript 2 for mainland Australian weights. The data given is

n; = 10,77 = 80,51 = 4,n9 = 20,ZT2 = 75,82 = 5,01 = 0.

That puts us in Scenario (6), which means we need
82 = b,
P 104202

We seek a 99% confidence interval, thus (1 — a) = 0.99 implies that ¢ = 0.005. Our critical value
has (10 + 20 — 2) = 28 degrees of freedom, thus our critical value is

to.005 = 2.763.
We appear to have the pieces for Table 2.4, Scenario (6):

[(10 — 1)4% + (20 — 1)57] ~ 22.1.

1
(80 — 75) £2.763v/22.1 1—10 + 20"~ 5+ 5.03 = (—0.03,10.03).
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25. This is comparing proportions; equivalently, looking at (p; — p2), where p; is proportion of fish
eaters who solve a puzzle, p, likewise for non-fish eaters. “Fish makes you smarter” translates as
(p1 — p2) > 0, so we have the hypothesis test .

Ho:(p1—p2) =0, Hy:(p1—p2)>0.

Since it’s a hypothesis test for a difference of proportions, we are in Scenario (12).
Here is the data:

R 15 . 10
ny = 25,1‘1 — 15,p1 — % = 0.6,1’L2 — 20,1’2 = 10,p2 — 20 =0.5.
We need 1B 10
Ps = 5pra0 — 0-5%;
so our test stat is
(0.6 —0.5)—0

2 ~ 0.67 > 0.05 = a,

\/0.556(1 — 0.556) (% + &)
so we don’t reject Hp: at significance level 0.05, the data does not suggest that fish makes you
smarter.

26. This is comparing means, that is, doing inference on (u; — ps2). Let’s have subscript 1 for
Neptune and subscript 2 for Pluto. Here’s the data:

n1 = 100,F; = 6.2, 81 = 2,9 = 200, T2 = 5.7, 83 = 3.
The large values of n; and ns put us, among all the possible (u1 — p2) scenarios, in Scenario (5).
(a) This is
Ho: (u1—p2) =0, Hg:(u1 —p2) #0.

Our test stat is

,_62-51-0

22 32
\/ 106 T 200

2P(Z > |1.71]) = 2(0.0436) = 0.0872 > 0.01 = a

so we do not reject Hp; the data does not suggest that the average lengths are different, at significance
level 0.01.

giving us a P-value of

(b) Since (1 — a) = 0.99, we need 2,905 = 2.576; now we follow Scenario (5), Table 2.4:
22 2

3
2-5.7)+2. —  — ~ 0.5+ 0.751 = (=0 251).
(6:2—5.7) & 2.5761 {55 + 555 ~ 0.5 % 0.751 = (0.251, 1.251)

27. Here’s another comparison of means, that is, inference on (u; — u2), where we use the subscript
1 for fish eaters and the subscript 2 for non-fish eaters.
To use our data, we need to equate higher scores with being smart. Thus our hypothesis test is

Ho: (p1 — p2) =0, (u1—p2) >0.
To choose among Scenarios (4)—(8), let’s write down the data given:
n1 =8,7; = 65,01 = 3,n9 = 10,72 = 60,09 = 5.
Since o1 and o9 are given, we use Scenario (4). That means our test stat is
(65 —60) —0 N

/32 4 52
s 710

P(Z > 2.63) = 0.0043 < 0.01 = q

2.63,

so that our P-value is
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thus we reject Hp: the data suggests, at significance level 0.01, that fish makes you smarter (on
average).

28. This is proportion; specifically, the proportion, call it p, of wolverines who are rabid. Our data
is

n =400,z = 28,p = %:0.07.

(a) For an upper confidence bound for p, we use Scenario (9), Table 2.4. Since (1 — &) = 0.95, 2, =
20.05 = 1.645, so our 95% upper confidence bound is

0.07(1 — 0.07)

0.07 + 1.645
+ 400

~ 0.07 4 0.021 = 0.091.

(b) For the hypothesis test
Hy:p=0.1, H,:p<0.1,
use Scenario (10), giving us the test stat

L 0.07 - 0.1 — 9
0.1(1-0.1) ’
400
so that the P-value is
P(Z < —2) = P(Z > 2) = 0.0228 < 0.05 = a,

making us reject Ho; the data suggests that fewer than ten percent of wolverines are rabid.

29. This involves the proportion, call it p, of college students who like onions on their hamburger.
Since it’s a hypothesis test

Hy:p=0.3, Hg,:p>0.3,
we use Scenario (10). Here’s our data:

2
n =100,z = 42,p = 1%:0.42.

Our test stat is

thus our P-value is
P(Z > 2.62) = 0.0044 < 0.01 < 0.05,
thus (since no significance level given, use 0.05 or 0.01 for a) we reject Ho; at significance level 0.01

or 0.05, the data provides strong evidence that the proportion of all college students who like onions
on their hamburgers exceeds the proportion for all people.

30. This is inference on a single population average p (defined to be the average cholesterol level of
all wolverines), so we must choose from Scenarios (1)-(3). Since no population standard deviation
is given, and the sample size is less than or equal to 40, we choose Scenario (3).

Here’s the data:

n=0,%=90,8 =12,
and (1 —a) = 0.95 implies that § = 0.025, so that tg = 2.571, with (6 — 1) = 5 degrees of freedom,
and, from Table 2.4, our confidence interval is

90 £ 2.571E ~90+12.6 = (77.4,102.6).

3

31. Let p be the mean test score of all Martians. Our hypothesis test is
Hy: p =100, H,:p # 100.
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We are given normality and population standard deviation ¢ = 15, so we are in Scenario (1).
For our test stat, we also need

1
T = 3(114 + 100 + 104 + 129 + 153) = 120.

Our test stat is
120 — 100
2= —3— ~ 2.98,

V5

giving us a P-value of
2P(Z > |2.98|) = 0.0028 < 0.01 < 0.05,

so we reject Ho; at significance level 0.01 or 0.05 (chosen because no significance level was given),
there is evidence that Martian test scores, on average, differ from 100.

32. This is Scenario (1) again, since we are given normality and o = 7.
Let’s calculate T = §(31 + 31 + 43 + 40 + 20 + 35 + +30 4 30 + 10) = 30. (1 — ) = 0.99 implies
that zg = 29.005 = 2.576, so our interval is

7
30 £2.576—= ~ 30 +6.01 = (23.99, 36.01).
NG ( )

33. Letting p be the average length of all scumslugs, we are given normality and can calculate T
and s for the data given, thus we are in Scenario (3).
We'll use the Computational Formula 1.3:

(56 + 68 + 52 + 24 + 50) = 250 and (562 + 68% 4 522 + 242 4 50%) = 13, 540,
thus

T = %(250) =50 and s = ﬁ 13,540 — %(250)2 = 260.
Also (1 — a) = 0.99 implies that § = 0.005. Staring at Table 2.4, Scenario (3), tells us to get, with
(5 — 1) = 4 degrees of freedom,
t0.005 = 4.604,

so here’s our interval:

V2
50 = 4.604(ﬂ) ~ 50 £ 33.20 = (16.80, 83.20).

V5

34. Assuming a positive connection between “smart” and “score on math exam” (we have to work
with whatever data is given), our parameter should be p defined to be the average math exam score
of all fish eaters.

Here is the hypothesis test for the claim “fish makes you smarter”:

Ho:p=70, Hy:p>T0.

Here're the numbers:

We are in Scenario (3), so our test stat is

85 —1T70
t= 5 = 20.

V16

P-value is difficult here, so let’s use Table 2.6, Scenario (3). For (16 — 1) = 15 degrees of freedom,
our relevant critical value is

ta = to.01 = 2.602,
thus, since
t =20 > 2.602 = tg.01,
we reject Ho; at significance level 0.01, the data suggests that fish makes you smarter.
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