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STATISTICS: CONFIDENCE INTERVALS MAGNIFICATION

This is one of a series of very short books on math, statistics, and physics called “Math Magnifi-
cations.” The “magnification” refers to focusing on a particular topic that is pivotal in or emblematic
of mathematics.

OUTLINE

Statistical inference comes primarily in two forms: confidence intervals and hypothesis testing.
This magnification, after some general results and motivation, will talk about a special case of
confidence intervals; a future magnification will talk about the same special case for hypothesis
testing. Another future magnification will show how the same constructions work for most other
popular confidence intervals and hypothesis tests.

This magnification will construct confidence intervals and upper and lower confidence bounds
for the mean of a normal population, with standard deviation known. Some of the desirabilities of
large samples will be exhibited.

Prerequisites for this magnification are algebra ([4] is more than sufficient); and [2] or other ref-
erences, such as [3], that contain the basic terminology of statistical inference. A class in probability,
such as [1] or (for those who have had calculus) [3] would be helpful, but is not necessary, since we
will, in Chapter 2, give a crash course in normal random variables.




1. INTRODUCTION.

We introduced, in [2], the primary mission (with special terminology) of statistical inference:
making an intelligent guess about an entire population by looking at a sample chosen from said
population. More specifically, we want to estimate the value of a population parameter  with a
specified calculation from the data, denoted an estimator 6 of 6.

For example, let’s say I'm running for Dogcatcher of Columbus. I poll 200 residents of Columbus,
and find that 101 of them will vote for me.

In the language of the penultimate paragraph, the last paragraph is described as follows. The
| population parameter is the proportion of the voting population of Columbus that will vote for me,

denoted p, and the estimator is the proportion of a sample that will vote for me, denoted p. For the

sample I took,

101 _

i what I need (to win the election) is p > 0.5. /@

|
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WillT win the election? IfI think the answer is “yes,” how confident am I? Should I spend money,
based on an assumption of winning? For example, should I buy a special, expensive Dogcatcher
Tuxedo prior to the election, so that it will arrive in time for post-election ceremonies?

What’s needed is a margin of error, meaning a positive number € (“epsilon,” standing for “error” )
that you add to and subtract from p. The “error” in this case is the fact that the population is much

bigger than the sample, thus the population proportion is not likely to be the same as the sample
proportion.

The terminology here is p + €, denoting all the real numbers between (p — €) and (p + ¢).
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Notice that the size of the error € can change the results of the election (assuming my interval
is correct). In the first picture below, I might lose; in the second picture below, I'm guaranteed to
win.
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In general, rather than a single number (the estimator, denoted 9) to estimate a population
parameter 6, we prefer a pair of numbers a, b, along with some measure of confidence that 6 is
between them.

We have changed our goal from guessing “0 equals 6” to “f is between a and b.” The set of
numbers between a and b is a confidence interval for 6, denoted

(a,b) = {numbers c|a < ¢ < b}.

This magnification will be restricted to the population parameter u, the population mean, for
a normal population with population standard deviation ¢ assumed to be known (see [2]). Messier
constructions for other parameters use almost exactly the same strategy, thus we are focusing on
this cleanest and simplest special case, to clarify the techniques without getting bogged down in
algebra.

We should mention here the most popular estimator /i for p, as discussed in [2]; see especially
(2, Example 20).

Definition 1.1. The sample mean X, from a random sample X1, Xo,...,X,,, is the random
variable

n is the sample size.
When z1, 2, ...,z, is a sequence of numbers,

_ 1
T=_—(z1+22+--+2n)

is called the mean of the sequence. If the sequence arises from a random sample after measurements
are made, T is (also) called the sample mean.

Terminology customs are important here: capital X means random variables and lower-case z
means numbers.




2. NORMAL RANDOM VARIABLES.

See [1, Chapter VI] or [3, Section 4.3] for more about normal random variables.

The following definition, included for intellectual completeness (see [2, Definitions 9 and 12
and Examples 15(2)]), does not tell us how to calculate normal probabilities; said calculations are
achieved with Theorem 2.7 and the Z table at the end of this magnification, as in Examples 2.8.

Definition 2.1. A normal random variable X is a continuous random variable with probability

density function
1 _ewp?
B(z) = e T
2mo
i is the mean of the random variable, o is the standard deviation, and e is a famous irrational
number.

Equivalent terminology is “X is normally distributed,” or “X has a normal distribution.”

The graph of ¢ has the infamous bell-shaped curve, symmetric about the vertical line z = y;
that is, the curve to the left of the vertical dotted line z = y is the mirror image of the curve to the
right of x = p.

The standard deviation o measures how spread out ¢ (and hence the values of X) is:
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Definition 2.2. The standard normal random variable, denoted Z, is the normal random
variable with x = 0 and o = 1.

The good news about Z is that tables of Z probabilities have been compiled: For a and b a pair
of numbers of absolute value less than or equal to three, rounded to two decimal places, tables (called
Z tables) such as the one at the end of this magnification will give us (approximately) P(a < Z < b),
shorthand for the probability that Z is between a and b. See Examples 2.4.

Here is the picture from our Z table, where, for any real number z, P(Z > z) = P(Z > z)
denotes the probability that Z is greater than the number z and P(Z < z) = P(Z < z) denotes the
probability that Z is less than the number 2.

Properties 2.3. (1) (symmetry) For any real z, P(Z > z) = P(Z < —=z).
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Examples 2.4. (a) Get P(Z > 1.23).
(b) Get P(Z < 1.23).

(c) Get P(Z < —1.23).

(d) Get P(Z > —1.23).

(e) Get P(Z > —1.23).

(f) Get P(—1.23 < Z < 1.23).

i (g) If 21 > 22, what (if anything) can be said about the relationship between P(Z > z;) and
| P(Z > z9)?

Solutions. (a) Writing 1.23 as 1.2 + 0.03, we look, in the Z table at the end of this magnification,
for the entry in the 1.2 row and 0.03 column, as reproduced below:

\ 2 007 |

(
—— = ~— T \/ .
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(b) By Properties 2.3(2), P(Z < 1.23) = 1 — P(Z > 1.23) = 1 — P(Z > 1.23) = 1 — 0.1093 = 0.8907,
from (a).

PR , | B

(d) By Properties 2.3(1), P(Z > —1.23) = P(Z < 1.23) = 0.8907, from (b).
(e) This is the same probability as (d), 0.8907.

(f) By (a) and Properties 2.3(1)and 2.3(2), this is
1-[P(Z>1.23)+ P(Z < —1.23)] =1—2P(Z > 1.23) = 1 — 2(0.1093) = 0.7814.
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(g) In the drawing below, we have written and shaded z; and corresponding probabilities in red, zo
in black. It is clear from the drawing that the black shading contains the red shadlng, hence has
larger area; in other words,

P(Z > 2z)>P(Z > z1).

\\\

'%/\(/\

Definition 2.5. For a a positive number less than one, the Z critical value for a is a number,
denoted z,, such that

P(Z > z,) = a.

Examples 2.6. These will be thinking backwards from Examples 2.4: we will go from probabilities
to z values, whereas Examples 2.4 went from z values to probabilities.

) Find the critical value for 0.2.

(a

(b) Find a number ¢ so that P(Z < ¢) = 0.75; identify any critical values used.

(c) Find a positive number ¢ so that P(—c < Z < ¢) = 0.9; identify any critical values used.
(

d) For arbitrary positive « less than one, what is P(-2¢ <Z <24)?

(e) If a1 > ap, what (if anything) can be said about the relationship between 2,, and z,,?




Solutions. (a) Here is the picture we'd like.

Rreh
SL\& 0!61/ 0. 3
e QU
b
A
Zo.2

In the Z tables at the end of this magnification, get as close as possible to the probability 0.2
in the inside: this occurs in the row 0.8, between the columns 0.04 and 0.05, as in the reproduction
below.

1 L0 0w / 0.0)”/(
(
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P N

Compare the two drawings we get fr(om the Z table with our desired picture at the beginning
of these Solutions; we conclude that

0.84 < z9.2 < 0.85.
For this magnification, we will accept 2.2 = 0.84 or 0.85.

0,197
%
2

0,04
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(b) By Properties 2.3(2), P(Z > ¢) =1— P(Z < c) =1— 0.75 = 0.25; that is, we want the critical
value ¢ = zp.95 for 0.25. Looking at the Z table we have

P(Z > 0.67) = 0.2514, P(Z > 0.68) = 0.2483,
so that, as in (a),
0.67 < ¢ < 0.68;
choose ¢ = 0.67 or 0.68.

(c) Here is the picture we want.

ek ik e it

1
- 9
By Properties 2.3,

PZsd=P(Z<—0= % [P(Z< —¢) + P(Z > )] = % L= (P(—c< Z <)) = %(1—0.9) — 0.05;

that is, we want ¢ = 2g g5, the critical value for 0.05.
We leave it to the reader to use the methods of (a) to get ¢ = 1.64 or 1.65.

(d) By Properties 2.3 and the definition of critical value,
a
P(—24 <Z<24)=1-[P(Z223)+P(Z<-24)] =1-2P(Z> 24) =1 -2(3)=(1-a).
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(e) The converse of Examples 2.4(g) is also true, by the same argument as the solution of Examples
2.4(g); that is, if P(Z > 2z2) > P(Z > z1), then z; > z5. All we need now is to translate into the
language of critical values:

P(Z > zq,) =01 > az = P(Z > 2,,),

thus 25, > 24,. See the drawing below, where z,, and a; are shaded in black, 2,, and a3 are shaded
in red.

N\ %

s %2

Theorem 2.7. (a) If X is normal, with mean p and standard deviation o, then
7 X-n

g

(b) If X is normal, with mean pux and standard deviation ox, then the sample mean X (see
Definitions 1.1) is also normal, with mean p = px and standard deviation o+ < = \/—, where n is
the sample size.

Theorem 2.7(b) explains why we like large committees. The larger the sample size, the smaller
ox is. This implies that extreme, or weird, behavior (by definition, being far from the mean ) is
less likely (see the picture at the end of Definition 2.1, comparing small standard deviation to large
standard deviation).

Examples 2.8. Suppose wolverine weight is normally distributed, with a mean of 12 pounds and a
standard deviation of 2 pounds; that is, the random variable X defined to be the weight, in pounds,
of a randomly chosen wolverine, is normally distributed, with mean p = 12, standard deviation
g =2

(a) What is the probability that a randomly chosen wolverine weighs more than 12.5 pounds?

(b) What is the probability that twenty-five randomly chosen wolverines weigh, on average, more
than 12.5 pounds?

(c) What is the probability that one hundred randomly chosen wolverines weigh, on average, more
than 12.5 pounds?

Solutions. (a) We want

2.5—12

P(X > 12.5) = P( )= P(Z> > ;

from the Z tables.

X = £ 12'50_ E ) = P(Z > 0.25) = 0.4013,




12

(b) Now we want, with sample size n = 25,

P(X > 12.5) = P(X . 48 12'5:“7) =P(Z> 12'5—2_1-2-) = P(Z > 1.25) = 0.1056,

0’7 UX m

from the Z tables.

(c) This is the same as (b), with n = 100,

_ X —pux  125—px 12.5 —12
P(X >12.5) = P(A_FX - Uy = p(z> 2212y _ p(z 5 25) = 0.0062,
ox oY /100

from the Z tables.

Notice that unusual behavior, in this case defined as weighing more than 12 pounds, of the
average wolverine, gets less likely as the sample size increases. Another way of saying this is that
we have more precise information about the sample average, in the sense that we have a higher
probability of being near the mean, when the sample size is larger.

Here is the probability statement that will lead to our confidence intervals and bounds in the
next chapter.

Corollary 2.9. If X is normal with mean p and standard deviation o, then for any positive « less

than one,
(X —p)
(l—a)zP(—z%< > <zg].

vn

Proof: In Examples 2.6(d), we hope you have shown that
(1-a)=P(-2g <Z < z2g).

Our result then follows from Theorem 2.7. O
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3. DERIVATION of CONFIDENCE INTERVALS and CONFIDENCE BOUNDS.

Throughout this section, X is normal, with (unknown) mean x and (known) standard deviation

o, X is the sample mean, from random samples of size n (see Definitions 1.1), and « is a positive
number less than one.

Derivation of confidence intervals 3.1. Recall the definition of critical value Definition 2.5.
Corollary 2.9 implies

(X- 2 | @?4 Ty S |

Definitions 3.2. When a sample z1, x5, ..., z, from X is taken, denote as usual (see, for example,
Definitions 1.1 and [2, Definitions 6]) the sample mean of numbers

(@1 +a2+ -+ Tn).

Derivation 3.1 leads to the following definition.

The 100(1 — @)% confidence interval for y is

((z—z ) (:1:+z —)) = the set of all real numbers c satisfying (z—z i) < e (T-}—z = )
v 1)) = v A

thlS 1S alSO deIlOted
= \/_“'

-

(%-2

% (74

’
=

’ - Contidence (l—a() <—+l
l

o
wid+h, or Vrec,lc‘tom
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(1 — a) is the confidence level or reliability of the confidence interval; 2z¢ 7"; is the width

or precision of the confidence interval. We have estimated u to within (z g ) .

Vn

R

Very informally, we are 100(1 —a)% confident that p is between (f —zg %) and (T + 2g 7"=) .

n

Identically, o
(1-a)= P(M > —z4)

(o4
n

leads to the definition of a 100(1 — )% upper confidence bound for p:

(z+ % 70—7;)

(1—(1) =P((Y_”)

— < za)
vn

leads to the definition of a 100(1 — a)% lower confidence bound for y:
T—7 -
« \/’f_l .

(1 — a) is the confidence level or reliability of each bound.

and

Again very informally, we are 100(1 — a)% confident that y is less than (E + za%)
and 100(1 — «)% confident that p is greater than (f - ZQVUTT) A

@Mlyy/ CO/WDLo\ame Q[-OL) —

|

(

X <§+2¢<%/

o contidence (| -4 —2

<] |

F-uh)
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Remark 3.3. The critical reader might wonder why the confidence level is written in the awkward
and backwards form (1 —a) or 100(1 — )%, so that a high confidence level corresponds to a small,
positive a.

The (1 — ) terminology for confidence level has become standard because it anticipates hy-

pothesis testing (to appear in future magnifications), where « is the significance of a hypothesis
test.




|

4. EXAMPLES and INTERPRETATIONS.

See Definitions 3.2 for relevant formulas and definitions.

human height is normally distributed with a standard deviation of three inches, if we measured four
people and got the following heights, in inches

70,68, 72, 74.

Example 4.1. Get a 99.5% confidence interval for the average height of all human beings, assuming

‘ Solution. Let’s fill in the pieces of our 100(1 — «)% confidence interval formula in Definitions 3.2:
2g——
= ()

100(1 — @) = 99.5 — (1 — a) = 0.995 — & = 0.005 — % = 0.0025.

From our Z tables we get the critical value zg = z9.0025 = 2.81.

p = 2.8

Although not required for solving this example, our strategy is 1llum1nated by the following
modification of the Z table picture we just drew.

0.Y

—7.%1 .81
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Our sample size n = 4, population standard deviation o — 3, and we may quickly calculate the
sample mean

1
T=7(70+68+72+74) = 71.

We appear to have all the ingredients for our confidence interval:

o 3
T+ g—— | =711+ (2.81— | = 71 + 4.215.
‘ (z’ \/ﬁ) ( ﬂ)

This can be written as an interval of numbers

(71 —4.215,71 + 4.215) = (66.785, 75.215),
meaning the set of all real numbers ¢ such that 66.785 < ¢ < 75.215.

l
(5~
__L{__'Y,lsi ( +£1L.1

G 3 -0
T(- %S 7 T4 25

Sl el o it R o 2

width = 8. 430

99.5% is the confidence level or reliability of our confidence interval. 8.430 = 75.215 — 66.785 —

2(4.215) is the width or precision of said interval. We have estimated K to within 4.215; with 99.5%
confidence,

lu—T71| < 4.215.
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Examples 4.2. Suppose wolverine mass is normally distributed, with standard deviation 100.

(a) Get a 90% confidence interval for the average mass of all wolverines, if a sample of 25 wolverines
has a mean of 8,439 grams.

Solution. See Definitions 3.2. We set 100(1 — a) = 90, and get a = 0.1, so that % = 0.05, and,
from the Z tables, our critical value is zg = 20.05 = 1.65.

0, 05
Q.95

oo

%0.05/ = L.65

"1-@5‘ [aés——

We have been told that o = 100,n = 25, and T = 8, 439, thus our confidence interval is
100

T+ (z% %) =8,439+ (I.GSE) = 8,439 + 33,

(8,406,8,472) = {numbers c| 8,406 < ¢ < 8,472}.

’M[

f

or

x37

[

I I
Yy g/ 41l

[

l

¥ 4ot g

That’s a precision of 2 x 33 = 66 and a confidence level of 90%.

(b) Same as (a), except a 99% confidence level.




19

Solution. All that is changing is a: 100(1 —a) = 99 — % = 0.005, so that, from the Z tables,
Z% = 20.005 = 2.58.

o

As with (a), our confidence interval is

o 100
T+ (29— )=8,439+ (258— ) = 8,439+ 51.6,
(zf ﬁz) ( \/25)

or
(8,387.4,8,490.6).
That’s a precision of 2 x 51.6 = 103.2 and a confidence level of 99%.

NOTE: More confidence implies (and requires) less precision, that is, a wider confidence interval.
Since (b) replaced 90% confidence with 99% percent confidence, our interval went from a precision
of 66 to a precision of 103.2.

Think of a confidence interval as a basket, placed outdoors to catch hailstones falling out of
the sky. To catch more hailstones (equivalent to more confidence in the interval), we need a bigger
basket (equivalent to a wider interval).

(c) Same as (b), except the sample size is 2500.

Solution. All that changes from (b) is n = 2500, instead of 25:

o 100
T+ (23— ) =8,439+ (2.58— ) = 8,439+ 5.16,
( 2 \/ﬁ) ( \/2500>

or
(8,433.84, 8,444.16).
That’s a precision of 2 x 5.16 = 10.32 (ten times as precise as (b)) with the same confidence as in

(b)

NOTE: A larger sample size creates more precision, that is, a skinnier confidence interval. Since

the sample size in (c) is 100 times as large as in (b), and \/+T0 = %, the width of the interval in (c)

is 75 the width of the interval in (b).
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The intuition here is that a larger sample means more information, which means more precise,
hence more informative, statements about the population mean pu.

For a more extreme illustration, stating that u is between —1 and 1 is more informative than
stating that u is between —1, 000,000 and 1, 000, 000.

(d) How large a sample is required to get a width less than 6 in a 99% confidence interval for the
average mass of all wolverines?

Solution. We know from our general formula in Definitions 3.2 that the width (precision) of our

confidence interval is

see. (b) and {c)) 2(2.58)(%).

o
2 Q& —— =
zg o (
Set 2(2.58)(1701%) < 6, and solve for n:
n > (86)% = 7, 396.
We need a sample of at least 7,397 wolverines.

(e) Get a 95% upper confidence bound for y and a 95% lower confidence bound for y, where 1 is the
average mass of all wolverines, if, as in (a), a sample of 25 wolverines has a mean of 8,439 grams.

Solution. See Definitions 3.2 for formulas for upper and lower confidence bounds. Setting
100(1 — ) = 95 implies that a = 0.05, thus the critical value we need is zo = 2p.05 = 1.65 (see the
Solution to (a)), and thus

100
T+ (za%) — 8,439 + (1.6572_5-) — 8,430+ 33 = 8,472

is the desired upper confidence bound for y, and

T — (;;,,%) — 8,439 — (1.65%) — 8,439 — 33 = 8,406

is the desired lower confidence bound for p.

Informally, we are 95% confident that u is less than 8,472 and we are 95% confident that y is
greater than 8, 406.

9/4(7(9 M, a5 T

Y

N
>

<
S [

]
M a5 % 9/%77,

Look back at the solution of part (a). The confidence interval constructed there tells us that we
are 90% confident that p is between 8,406 and 8, 472. This may be stated in language that sounds
like upper and lower confidence bounds:

we are 90% confident that u is both greater than 8,406 and less than 8,472.
Since 8,406 and 8,472 are 95% lower and upper (respectively) confidence bounds, why doesn’t
the confidence interval of part (a) have 95% confidence rather than merely 90% confidence?

One way to answer that last question is that the sets producing 95% confidence, for upper and
lower confidence bounds for p, are different. To get the confidence of the confidence interval, we
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need to be in both those sets; that is, we are taking an intersection of two sets, each of which has
95% confidence. Intersections usually shrink sets, so we shouldn’t expect to hold onto that 95%.

A better answer to that question in the penultimate paragraph comes from a negative outlook.
That 95% upper confidence bound of 8,472 is saying that we are as much as 5% confident that
p = 8,472; identically, the 95% lower confidence bound of 8,406 is saying that we are as much as
5% confident that p < 8,406. That is, we threw out as much as 5% confidence to get u less than
8,472 and we threw out as much as 5% confidence to get y greater than 8,406. To get both p less
than 8,472 and u greater than 8,406, as is needed for our confidence interval, we have to throw out
as much as both those 5% (unwanted) confidences. Thus we are throwing out as much as 10%, to
get inside our confidence interval, making it a (100 — 10) = 90% confidence interval.

l
B BT o i B z( sty
\ !
8 400 g 411

Examples 4.3. “Confidence interval” here will mean the confidence interval for the population
mean p constructed in Definitions 3.2, under the hypotheses of Chapter 3.

(a) Suppose the sample size is multiplied by 36. What happens to the precision of a confidence
interval, assuming the confidence stays the same?

(b) How much should we enlarge the sample size, to make the precision quadruple, that is, make
the width be multiplied by one quarter, assuming the confidence stays the same?

(c) Suppose, in our confidence interval, we change from 95 percent to 80 percent confidence; what
happens to the precision? Assume the sample size stays the same.

(d) Suppose, in a 90% confidence interval, we quintuple the precision; that is, the width of the
interval is divided by five. What is the new confidence level? Assume the sample size stays the
same.

(e) Same as (d), except we begin with a 99% confidence interval.

(f) If we increase the precision of a confidence interval, that is, make the interval skinnier, what
happens to the confidence? Assume the sample size stays the same.

(g) If (3,7) is a 95% confidence interval, what is, using the same data, an 80% confidence interval?

Solutions. (a) The sample size in the precision or width 2::%7"; appears only in the 71; term.
Since we are replacing n with 36n, our new precision is

, N SO S ¢ e
236n 26yn 6 2n)’

that is, the new width is one-sixth of the old width.

(b) As in the solution to (a), if n’ is the new sample size, we need

o 1

S hflo . BN st il ol
e i\t ) P T i)

2z

thus . o
- - ' ]
' =16 (—) , implying n’ = 16n;
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we must multiply the sample size by 16.
Note that /16 = 4.

(c) Let @ = 0.05 and o/ = 0.2, so that (1 — a) is the original 95% confidence and (1 — o) is the new
80% confidence.

We are changing from a precision of 2z -% g/mtoa precision of 2z,x 7;.
We need those critical values (Deﬁmtlon 2.5) in the formula above for precision: z
Staring at the Z table at the end of the magnification, as in Chapter 2, we get

%a.ndza.

Zg = 20.025 = 1.96 and Zat = 291 = 1.28,
2

so the new precision divided by the old precision is $:28 ~ 0.653; that is, the width of the 80%
confidence interval is 0.653 times the width of the 95% confidence interval.
Compare this to the precisions in Examples 4.2(a) and (b), especially the “NOTE” after the

solution of Examples 4.2(b).

(d) Let @ = 0.1, so that (1 — ) is the confidence level of the original confidence interval, and let
o' be such that (1 — o) is the confidence level of the new confidence interval, modified from the
original by having its width divided by 5.
The width of the original confidence interval is 2za = 2(1.65)7"-, while the width of the new
2 n n
confidence interval is

229‘;

(2(1.65)%) ,

a_=—(165)—033

2

thus

| =

ag
oy

so that

By definition of critical value,
/4

% = P(Z> 24) = P(Z > 0.33) = 0.3707,

from the Z tables, thus o’ = 0.7414, so that the new confidence level is (1 — /) = (1 — 0.7414) =
0.2586, or 25.86%.

(e) With o = 0.01 and o' as in (d), the same reasoning as in (d) shows that

1
2y = £(2.58) = 0.516,
so that ,

% = P(Z > 24) = P(Z > 0.516) ~ P(Z > 0.52) = 0.3015,
thus the new confidence level is (1 — a’) = (1 — 0.603) = 0.397, or 39.7%.

(f) The different answers to parts (d) and (e) show that, even if we stated precisely what was
happening to the precision, a precise quantitative answer to (f) would be impossible. Let’s see how
much we can say.

Let o and o' be as in (d) and (e). Since the width is decreased, we have

2z

= <1,
2z

n
Q\

ul[
$e

J

0
oJR

R
Sk

or
za' < Ze

which implies, by Examples 2.4(g), that & ~> 8 S which implies that (1 — a’) < (1 — a); that is, the
confidence has decreased.
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(g) Let @ = 0.05 and o’ = 0.2, so that (1 — a) is the original confidence level and (1 —«') is the
confidence level of the confidence interval to be constructed. It is clear from Definitions 3.2 of a
confidence interval that

ik
z=3(3+7) =5
the midpoint of the interval (3, 7). Thus

(o ag
=7 a— =54 1.96—,
TTr R oINS
thus
A
vn o 1.96

so that our desired confidence interval is

o o
Tt2zy —=5+128— =
BN RVD Vi
Notice that the width of the 80% confidence interval is (6.306 — 3.694) = 2.612, the width of the
95% confidence interval is 4, and

o 21 _ 128 2.612

Zg. 20.025 = 1.96 k4 4

2
5+ 1.28(1—96) ~ 5+ 1.306 = (3.694, 6.306).

(approximation due to rounding).

In fact, we could have done this more quickly, after getting the midpoint 5: the 80% confidence

interval is

1.28
==
B 1.96(2)’

since 2 is half the width of the 95% confidence interval.

Interpretation 4.4. The suspicious reader might have noticed that we seem to be avoiding the
word “probability,” at least after Derivation 3.1. We've instead spoken glibly about “confidence,”
which, if you compare Derivation 3.1 and the definition of a confidence interval in Definitions 3.2,
seems related to probability.

But here we must save the reader embarrassment and social disapproval: if (a, b), the set of all
numbers between a and b, is a confidence interval for a population parameter 6, say of confidence
level 99% (replace with whatever confidence you'd like), it is not correct to say

For emphasis, we hit the offending quote with a math-busters symbol

Semantically the quoted statement makes no sense: 6 is a fixed, unvarying (although unknown)
number, like the average length of all cats, and probabilities are applied to uncertain events, like the
length of an unspecified cat chosen at random.

There are probabilities in Derivation 3.1, but those probabilities apply to the random variable
X, rather than the parameter L.

Here is the interpretation of the confidence level 100(1 — )% for a 100(1 — )% confidence
interval for a population parameter 6. If you construct many 100(1 — a)% confidence intervals for 0,
following the same strategy and taking samples of the same sample size, approximately 100(1 — )%
of those (different) confidence intervals will contain 6.

For example, in Examples 4.2(a), we constructed, from a sample of 25 measurements, the 90%
confidence interval for p

8,439 & 33 = (8,406, 8,472).
It is not correct to say that

w is between 8,406 and 8,472 with probability 90%.
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The 90% confidence means that, if we construct many 90% confidence intervals for y of the form

E)’

the same way as we constructed (8,406, 8,472), from samples 1, Ts, . . . a5 of size 25, where

T+33 (equals T+ 2g 05

1
E%(:El +z2 + - -+ Z25),

then approximately 90% of those (different) intervals will contain p.

In the drawing below, the confidence intervals are drawn in black, the vertical red line is y, and
the red line crosses approximately 90% of the confidence intervals.
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Remark 4.5. For a fixed sample size, there is a trade-off between precision and confidence (see Defi-
nitions 3.2): increasing confidence decreases precision (meaning making a confidence interval wider)
while increasing precision (meaning making a confidence interval less wide) decreases confidence.
This is sad, since we would like to be both confident and precise.

It is when we increase sample size that we may increase confidence without losing precision or
increase precision without losing confidence.
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HOMEWORK

All confidence intervals are for y, the population mean of a random variable X , as in Chapter 3.

1. Suppose that, when sampling from a normal population with standard deviation 30, we get a
sample mean of 10.

(a) Find a 90% confidence interval, if the sample size is 9.
(b) Find a 90% confidence interval, if the sample size is 900.
(c) Find a 99% confidence interval, if the sample size is 9.
(d) Find a 99% confidence interval, if the sample size is 900.

In each of the confidence intervals in no. 1, find the precision.

2.
3. Suppose I make the following measurements from a normal population with standard deviation
8:

1,0,0,-1,2,3,3,2,-5,0,1,2,—3,0, —2, —35.
(a) Find an 80% confidence interval.
(b) Find a 95% confidence interval.
(c) Find a 99.5% confidence interval.
(d) Find a confidence interval whose width is 6. What is the confidence level of this interval?

4. Suppose a normal population has a standard deviation of 0.5. How large a sample must be taken,
to make a 99% confidence interval have width less than 1?

5. Same as no. 4, except make the width less than 0.01.
6. Same as no. 5, except make the confidence level 70%.

7. A sample of 25 people gave a sample mean of 12 stresses per day. Assuming stresses per day is
normally distributed with a standard deviation of 4 stresses, calculate a 90% confidence interval for
the average number of stresses per day among all people.

8. I measure ten frogs and get a sample mean of 6 grams. Assuming frog mass is normally distributed
with a standard deviation of 1.2 grams, get

(a) an 80% confidence interval for the average mass of all frogs;

(b) an 80% upper confidence bound for the average mass of all frogs;

(c) an 80% lower confidence bound for the average mass of all frogs.

(d) a 90% upper confidence bound for the average mass of all frogs; and

(e) a 90% lower confidence bound for the average mass of all frogs.

9. Suppose X is normal, with known standard deviation.

(a) How much must you increase the sample size, to decrease the width of a confidence interval by
a factor of three, if the confidence level remains the same?

(b) If a 95% confidence interval is (—1,5), find a 90% confidence interval, using the same data.
(c) Suppose o = 25. Get a 90% confidence interval, if = 10 and n = 400.

(d) What happens to the precision of a confidence interval, if the confidence level changes from 75%
to 99%?
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10. For the same data, taken from a normal population with known standard deviation, if the
confidence level changes from 90% to 60%, will the width of the confidence interval increase or
decrease?

11. Suppose X is a normal population with known standard deviation o = 100. How large must n,
the sample size, be, so that the width of a 99.8% confidence interval is less than 0.2?

12. If the sample size changes from 50 to 400, while maintaining the same confidence level, will the
width of the confidence interval increase or decrease?

13. Suppose the sugar content of a randomly chosen “Big Drink”(BD) is normal. Your sidekick
samples 9 BDs and gets a sample average of 3 grams. Get a 95% upper confidence bound for the
average sugar content of all BDs, under the assumption that the standard deviation of the sugar
content of all BDs is 0.6 grams.

14. Suppose a population is normal, with known standard deviation. If we increase the sample size,
while maintaining the same precision, will the confidence level increase or decrease?

15. If 2 > 1, what can be said about P(Z > z)? Use the Z tables at the end of this magnification.

16. Which is larger, zg.1 or 29017

17. If P(Z > ¢) < 0.02, what can be said about ¢? Use the Z tables at the end of this magnification.
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HOMEWORK ANSWERS

1. (a) 10+ z0,05%% =10+ 1.65(%%) =10+16.5 = (—6.5,26.5).
(b) 10 + z0.05:% =10+ 1.65(7&3) =10+ 1.65 = (8.35,11.65).
(c) 10+ 20,0057 = 10+ 2. 58(%%) = 10+ 25.8 = (~15.8, 35.8).
(d) 10 + 20,005 355 = 10 + 2.58(A%=) = 10+ 2.58 = (7.42,12.58).

2. (a) 2x16.5=233; (b)2x1.65=3.3; (c)2x258=516; (d)2x 2.58=5.16.
3. We calculate T = —2.

(8) 2+ 20.1(55) = —2+ 1.28( ) = —2 +2.56 = (~4.56, 0.56).

(b) =2+ 20.005( ) = —2 £ 1.96(F5) = —2+3.92 = (-5.92,1.92).

(c) -2+ zo_oozs(fﬁ) =—2+281(55) = —2+5.62 = (—7.62,3.62).

(d) Since 3 is half of six, our confidence interval is —2 4+ 3 = (-5, 1).
To get the confidence level (1 — a), we set 22g 781=6 = 6, so that zg = 1.5, meaning (using the Z
tables at the end of this magnification)

0.0668 = P(Z > 1.5) = P(Z > z¢) = 5
so that o = 0.1336, and the confidence level is (100 — 13.36)% = 86.64%.

K

4. Since the width is 2z¢ % = 2z0,0057= =12(2. 58)7, set
0.5
2(2.58)—= < 1,
f

and solve for n: n > (2(2.58)(0.5))* = 6.6564; we want a sample of more than six.

5. As with no. 4, set

2(2.58)0'72 < 0.01,

2
and solve for n: n > ( %0'—5)) = 66, 564; we want a sample of more than 66, 564.

6. As with no. 5, set

2(1. 04)?/; 2202 ?/E

2
and solve for n: n > (3(1'—((;1(31(@) = 10, 816; we want a sample of more than 10, 816.

< 0.01,

7. 12+ 2005752 = 12+ 1.65(A=) = 12+ 1.32 = (10.68, 13.32).

§||A
N o

)=6+ 175@ ~ 6 £ 0.490 = (5.510, 6.490).
) f/"ﬁ ~ 6.323.
) 6 —202(1%) =6 —0.85(1%) =6 — L2 ~ 5.677.
V10 V10 V1o
(d) 6+ Zo.llffo =6+1.29(32) =6+ % ~ 6.490. Compare to (a).

(e) 6 — Zo_l% =6-1.29(J%) =6 — l\%‘oﬁ ~ 5.510. Compare to (a).

éd

8. (a) 6:i:z0,1%-—6d:129( 1,
(b) 6+z0A2% =6+0.85(22

| I

a|

éﬂ

O
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9. (a) Multiply the sample size by nine.
(b) 2+ 3( 200 ) =2 +3(1:85) ~ 2 42,526 = (—0.526, 4.526).

20.025 1.96 !
Notice that we have more precision with the 90% confidence interval compared to the 95%

confidence interval; a loss of confidence corresponds to a gain in precision.

(c) 10+ 20-0572;%6 =10+ 1.65(7245—06) =10+ 2.0625 = (7.9375, 12.0625).

(d) The precision diminishes; that is, the interval gets wider.

10. The width will decrease (more precision, when we permit a loss in the confidence level).
11. The width is 220.001 % = 2(3.08)1%2, so set

Jn’

2(3.08)2% 0.9

Jn

and solve for n > (2(3.08)%)2 = 9,486, 400; we need a sample of more than 9, 486, 400.

12. Decrease (new width equals old width times =)

13. 3+ z0,05%—g =3+ 1.65(‘373) =3+40.33 =3.33.

14. The confidence level will increase.

15. P(Z > z) < P(Z > 1) = 0.1587.

16. 2901 is larger than 21, since 0.01 < 0.1. See Examples 2.6(e).

17. Since, from the Z tables, P(Z > 2.06) < 0.02 and P(Z > 2.05) > 0.02, ¢ > 2.05 is the most we
can say about c.
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