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ABSTRACT. This brief note has three parts, tied together by being related to the age, or apparent age,
of statistical inference. The first part observes how easily one may get the impression that statistics is only
about one hundred years old. The second part gives examples to demonstrate that an age of three hundred
years is more accurate. The third part argues that many of the origins of statistics may be found in the
mathematics and philosophy of the classical Greeks. Detailed references are given throughout, to enable the
reader to flesh out what are meant to be only quick summaries.
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1. HOW CLASSICAL IS “CLASSICAL STATISTICS”?

It is easy to get the impression, especially when beginning graduate study in the subject, that statistics is
about one hundred years old. Particularly misleading is the common use of “classical” as being synonymous
with “frequentist,” especially as formulated by Fisher and his contemporaries, in the basic partitioning
of statistics into two camps of varying partisanship. The excellent textbook Casella and Berger (2002)
introduces Bayesian statistics with the following sentence, at the beginning of Section 7.2.3, top of page
324: “The Bayesian approach to statistics is fundamentally different from the classical approach [frequentist,
Fisher et al.] that we have been taking.” Consider also, on page 2 of Lehmann and Casella (1999) “frequentist
(the classical approach of averaging over repeated experiments),”. The following more detailed exposition
may be found in Stuart and Ord (1991, p. 1197, lines 15–18): “...the frequentist paradigm, sometimes known
as the classical approach, which has been the dominant school of statistical thought for most of this [the
twentieth] century. However, the Bayesian viewpoint has grown in popularity since the 1950s, ...” (italics
theirs). In that same book, under “classical inference” in the index, one finds “see Frequentist inference.”

Thus we seem to see frequentist statistics, beginning in the late nineteenth or early twentieth century, as
the Parthenon of statistics, with Bayesian statistics a new avant garde approach arising in the lifetime of
the currently middle-aged. Some discomfort with this modernist conception of statistics may occur if one
hears of Thomas Bayes, 1701–1761, but this coincidence of names could be explained as another esoteric
joke, analogous to the statistician formerly known as Student, and his distributions. A superficial “Google”
search of Thomas Bayes yields “British mathematician and Presbyterian minister,” not really the model of
a modern statistician.

In apparent support of this view of statistics’ chronology, Stigler (1999), in Chapter 8, proposes to “advance
and defend the claim that mathematical statistics began in 1933.”

2. EARLY APPEARANCES OF POPULAR STATISTICAL ENTITIES.

The second third of this brief note is meant to show that statistical inference is closer to three hundred
years old; that, in particular, most of the objects that now appear in an introductory statistics course were
in standard use in the eighteenth century.

Let’s begin with the central limit theorem, really a probability result, but so fundamental to large-sample
statistical inference that it may be considered on the interface of probability and statistics. DeMoivre proved
it for binomial distributions in 1733 (see Hald (1998, Sec. 2.3, p. 17)). Laplace proved the general case in
1810 (Hald (1998, Sec. 17.2, p. 307)). See also Kendall and Plackett (1977, pp. 101–104), for a description
of Daniel Bernoulli’s work on the central limit theorem, 1770–1771.

Least-squares regression (not by that name) was introduced by Legendre in 1805 (see Stigler (1986, p.
55) and Hald (1998, Sec. 6.4, p. 118)) and Gauss in 1809 (see Stigler (1986, p. 140) and Hald (1998, Sec.
18.1, p. 351)). Gauss asserted, probably correctly, that he had gotten his results as early as 1795. Gauss’s
formulation included probability distributions on the parameters and the error. Throughout the second half
of the eighteenth century, the same idea of choosing parameters that minimize error was presented, with
either the sum or the maximum of the absolute deviations replacing the sum of the squares of the deviations,
in other words, L1 or L∞ replacing L2. See Hald (1998, Chap. 6), Stigler (1986, Chap. 1), and deLaubenfels
(2006), and the references therein.
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Lambert in 1760 solves a maximum likelihood equation to get the MLE (maximum likelihood estimator)
for a population mean µ, in a probability distribution p(x) = f(x − µ), with the function f specified (see
Hald (1998, pp. 81–82)). Daniel Bernoulli also constructs an MLE in a 1778 paper, although there is reason
to believe he wrote up the results as early as 1769 (see Pearson and Kendall (1970, pp. 155–172) and
Hald (1998, pp. 84–85)). Lambert gives no motivation for using the MLE, while Daniel Bernoulli calls his
motivation “metaphysical rather than mathematical.” Laplace’s “Principle” of inverse probability,

p(θ|~x) ∝ p(~x|θ),

for a probability density or mass function p, data ~x, parameter θ, which follows by Bayes’ theorem from
his uniform formulation of parameter spaces (see Stigler (1986, pp. 102–105)) was stated in 1774 for θ
discrete and in 1786 for θ continuous, although the continuous formulation was used by him in both 1774
and 1781 papers (see Hald (1998, pp. 160–161)). Besides launching a general theory of Bayesian statistical
inference, note that Laplace’s principle makes maximizing the posterior probability equivalent to choosing
the MLE. Gauss’s presentation of least-squares regression, mentioned above, included the observation that,
for a normal distribution on the error, the least-squares estimators are MLEs.

Credible sets, the Bayesian analogues of confidence intervals, are virtually automatic once one has explicit
representations of posterior distributions. But authentic frequentist confidence intervals also appear in the
eighteenth century. Lagrange in 1776 uses the asymptotic normality of (p − p̂), for binomial parameter p,

sample proportion p̂, with mean zero and variance p̂(1−p̂)
n , to assert, for any positive t, that “the probability

that the value of p is enclosed between the limits”

p̂ ± t

√
p̂(1 − p̂)

n
(*)

equals (Φ(t) − Φ(−t)) , where Φ is the cumulative distribution function for the standard normal variable Z
(see Hald (1998, p. 23)). The interval (*) is a (frequentist) confidence interval for p, with confidence level
(Φ(t) − Φ(−t)) . Laplace also gets this confidence interval from the central limit theorem in Laplace (1812),
and comments there that the same result is obtained by the Bayesian approach of treating p as a random
variable with uniform prior distribution, and using the asymptotic normality of the posterior distribution,
as he did in 1774 (see Hald (1998, pp. 24–25)).

Arbuthnot in 1710 tested the null hypothesis of male and female births in London being equally likely; he
called this hypothesis “Chance” (see Kendall and Plackett (1977, pp. 30–34)). The data consisted of there
being more male births than female births each year for 82 years in a row. The probability of this data,
given the null hypothesis, is (.5)82, sufficiently small for him to conclude that “it is Art, not Chance, that
governs.” That was a frequentist hypothesis test (Stigler (1986, pp. 225-226), Hald (1998, p. 65)). Other
statisticians, such as Nicholas Bernoulli, suggested that the hypothesized “chance” (that is, the binomial
parameter p defined to be the probability that a birth in London is male) could be something other than
.5 (Stigler (1986, p. 226), Hald (1998, pp. 65–66)). Laplace, in 1781, addressed a similar problem in Paris,
but with Bayesian techniques: given 251, 527 male births and 241, 945 female births from 1745–1770, he
calculated a posterior probability

P (q ≤ .5 | data ) = 1.1521× 10−42 (q ≡ probability that a birth in Paris is male),

concluding that male births were more likely than female births. Even more extreme numbers gave a similar
conclusion in London. He also tested the null hypothesis of male births in London being less likely than
male births in Paris, getting a posterior probability of

P (q > p | data ) =
1

410, 458
,

and concluding that London was more prone to male births than Paris. Interestingly, when a similar
comparison to Paris and Naples gave a posterior probability of 1

100
, he said it “is not sufficiently extreme for an

irrevocable pronouncement” (Stigler (1986, pp. 134–135)). It is stimulating to one’s historical imagination to
contrast this with the modern habit, at least in many circles, of a significance level of .01 always representing
sufficiently strong data for rejecting a null hypothesis.
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Speaking of historical imagination, Arbuthnot’s 1710 paper was titled “An argument for Divine Provi-
dence, taken from the constant regularity observ’d in the births of both sexes.” Here we have two subjects a
prudent modern speaker or instructor might be hesitant to address: anything as openly religious as “Divine
Providence” and formulating birth gender as a binomial problem–which gender do I choose as “success” in
the traditional binomial counting of “successes”?

3. TRULY CLASSICAL ORIGINS.

In the last third of this note I would like to argue that many origins of statistical inference may be found
in certain aspects of classical Greek mathematics and philosophy. This is not meant to imply these ideas are
statistics, but that statistical inference shares them with calculus as a common ancestor, so that calculus
and statistics may be considered supportive cousins.

For a rough working definition of statistical inference to refer to, I quote introductory definitions from
two webpages of Departments of Statistics:

University of California, Los Angeles: (www.stat.ucla.edu) “...make decisions in the face of uncertainty”;
The Ohio State University, Columbus: (www.stat.osu.edu/dept/emphasis.html) “...science of decision mak-
ing under uncertainty...”

Here is an outline of my argument.

1. Historically, Greek mathematicians were the first to deal with the style of uncertainty that statisticians
deal with.
2. Closely correlated with this uncertainty was their dealing with continuous models.
3. They were the first to not only make approximations but methodically estimate the error in these
approximations, in particular controlling error with inequalities involving the quantity being estimated (see
Resnikoff and Wells (1984, Chapter 4)).
4. Platonism, roughly, the philosophy that there is a perfect immaterial world, which our observed material
world can only approximate or be shadows or reflections of, nicely describes the relationship of statistics to
probability, a sample to a population, or a statistic to a parameter, and, more generally, the incorrigible and
always potentially infinite error and uncertainty involved in statistical inference.
5. Although Greek mathematicians were not heavy users of inference (their astronomy and geography may
be an exception; see Struik (1987, pp. 54–55), Resnikoff and Wells (1984, pp. 93–103)), they were responsible
for the necessary precursor, rigorous deduction. Techniques of deduction are a necessary first step before
inference can be effective; deduction (in particular, for statistical inference, probability) is how one tests the
candidates for hypotheses arrived at by inference.
6. Although the Greeks did not develop probability, they understood how essential it was to knowledge or
truth, as illustrated by Aristotle’s question of whether the statement “there will be a sea battle tomorrow”
is true or false (Anglin and Lambek (1995, p. 68)).

Now I will briefly elaborate on some of the points above.
Unlike probability, where both discrete and continuous models appear routinely, statistics seems fun-

damentally continuous, both literally in the sense that a continuous parameter space is usually the most
natural, and subjectively, in the elusiveness of the quantities sought.

At least as early as the statement “all is water” ascribed to Thales (624–547 B.C.), historically the first
real mathematician in the sense of addressing “why” in addition to “how,” many Greeks had a continuous
model for the world (not all; Pythagoras (570–500 B.C.) stated “all is number,” meaning natural or at most
rational numbers, a discrete model). Besides their belief in truth as an end in itself, the classical Greeks’
great interest in geometry led to considering continuous phenomena, and thence to encountering systemic
uncertainty. Where, exactly, are you on a line?

Irreconcilable confusion was exacerbated by their insistence on allowing as “numbers” only rational num-
bers (This perspective persisted even with many mathematicians up through the end of the nineteenth
century; consider this quote from Kronecker, in 1886: “The integer numbers were made by God, everything
else is the work of man.” See Struik (1987, p. 162.)
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The earliest Pythagoreans were forced into intimacy with this discord between their continuous geometry
and their discrete arithmetic merely by drawing the simplest right triangle, with both legs of length one,
hence a hypotenuse of length

√
2, not rational (see Struik (1987, p. 42), Stillwell (1989, Sec. 1.5), Anglin

and Lambek (1995, Chap. 10)).
Probably the Greeks’ most famous encounter with uncertainty is Zeno’s paradoxes (see Anglin and Lambek

(1995, p. 55)). Here is one perhaps less well known than the tortoise that could never be overtaken: an arrow
in flight, at a fixed instant, travels no distance, therefore has no motion. As with the tortoise, Zeno’s surely
ironic conclusion is that motion is an illusion. As with other paradoxes of the time, the seeming contradiction
comes from the conflict between continuous (geometry; specifically, length) and discrete (numbers and time)
models.

The style that the problems above share with statistical inference is the pervasiveness of the uncertainty.
Perhaps especially motivating, with their sense of incompleteness, are those problems that weren’t solved
at the time, such as Zeno’s paradoxes (although, in fairness to the classical Greeks, impressive successes,
such as the method of exhaustion and “atoms”; see Struik (1987, pp. 46–47); must be mentioned). These
problems set the stage for both statistics and calculus. They led to the practical philosophical orientation
that approximation is necessary and error and imperfection are inevitable; hence the desire for models that
are not too sensitive to imperfect measurements or assumptions, denoted “robust” in statistics and “well
posed” in mathematics. Statistics and calculus represent different, but closely related, responses to that
outlook: calculus with limits, statistics with inference from samples.

Speaking more literally of philosophy, Dale (1999) suggests, in footnote 3 of Chapter 1, that Plato’s
parable of the cave could be considered the first example of an inverse problem. More generally, according
to Platonism the material world that we see consists merely of shadows of an unseen immaterial world of
“forms.” See Anglin and Lambek (1995, pp. 67–68 and elsewhere), for a quick description of Platonism.
For example, the idea, or “form” of a circle is (only) approximated by a drawing of a circle, an earring, or
an Olympics symbol. Reasoning from these material approximations to a conception of the immaterial idea
is inverse reasoning or inference.

More directly to the point, any continuous model must be considered in the realm of the immaterial.
Any information achieved materially (that is, data) is finite, and the set of all possible such information is
therefore countable. Continuous objects are uncountable. For example, the support of a continuous random
variable is a union of intervals of real numbers, an uncountable set. The data that we actually calculate or
work with is decimal approximations of real numbers, a countable set.

The acknowledgment of the existence of approximation and error is equivalent to accepting the presence
of uncertainty. A sign of this equivalence is the development of a “theory of errors” (Hald (1998, Chap. 5))
in the foundations of statistics that developed in the eighteenth century. A key step in the development of
statistical inference is Thomas Simpson’s decomposition, in 1755, of a measurement into

measurement = (true value) + (error)

(see Eisenhart (1961), Plackett (1972), and Stigler (1986, p. 90)).
Note that the extension from approximations of a desired quantity to error bounds on that quantity,

alluded to in point 3, is very analogous to the important step in statistics of putting a margin of error
around an estimator of a parameter, to form either confidence or credible (depending on one’s statistical
orientation) intervals.

Early origins of probability may be found in games of chance, including interesting precursors of dice; see
David (1998). I think Aristotle’s comment in point 6 shows that the Greeks understood more than others
of the time how fundamental probability is. See Kendall and Plackett (1977, pp. 1–14), for a discussion of
the classical Greeks and probability.

The intimate relationship between calculus and statistics, supported by this common ancestry, is impor-
tant, because the ultimate justification for statistical constructions and techniques, frequentist or Bayesian,
really lies in their asymptotic behavior, that is, their convergence, the calculus response to uncertainty, to
the desired quantity.

For the penultimate paragraph, I briefly allude to two dissenting opinions. I’ve already mentioned Stigler
(1999, Chap. 8), giving a “point estimate” of 1933 for the beginning of statistics. A different sort of
disagreement may be found in Kendall (1960), objecting to excessive stretching of historical origins into the
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past (“The writer on any modern idea who can claim the Chinese thought of it first in the Shang period is
usually regarded as having scored a point.”)

I argue that origins of the sort I’ve described, of a people (Greek mathematicians and philosophers)
identifying problems whose solutions were often left to their intellectual descendants (modern statisticians
and mathematicians) is the sort of historical connection that is particularly valuable, in the traditional sense
of not repeating mistakes of the past. Here is an example. Greek mathematicians eventually got the area of
a circle (see Archimedes’ proof, Anglin and Lambek (1995, pp. 98–100)); much earlier phases of the analysis
began with upper and lower approximations, by, respectively, circumscribing and inscribing regular polygons.
In an early phase of this reasoning, the sophist Antiphon (about 425 B.C.) asserted that a circle actually
is the inscribed polygon, at least for sufficiently many sides. This was closely related to Zeno’s paradoxes,
sharing the same confusion about continuous versus discrete; in this case, Antiphon was visualizing space
as being discrete, so that the true nature of the circle—smooth, instantaneous changes of direction–was
degraded into something subjectively quite different, the finite number of abrupt changes of direction of a
polygon (see Anglin and Lambek (1995, pp. 60–61)). This equating of an approximation with the real thing
is analogous to treating 99% probability (or the more indirect confidence or significance) as being equivalent
to certainty.
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