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DOES ONTOGENY RECAPITULATE PHYLOGENY

in learning freshman calculus?

Ralph deLaubenfels

ABSTRACT. The answer is NO in what we teach; YES in students’ absorption and interpretation
of what we teach or could teach, that is, in natural conceptions and misconceptions that arise or
could arise if exposed to calculus ideas.

I. INTRODUCTION. Ontogeny is the development of an individual; phylogeny is the develop-
ment or evolution of species. The phrase “Ontogeny recapitulates phylogeny” is attributed to Ernst
Haeckel in the mid nineteenth century (first published 1866), although the idea appears as early
as the 1790s. “Recapitulate,” at least in biology, means to repeat. Here is a description of the
capitalized phrase in the title due to Dr. Spock ([6, p. 223]), famous alleged baby expert:

“Each child as he develops is retracing the whole history of mankind, physically and spiritually,
step by step. A baby starts off in the womb as a single tiny cell, just the way the first living thing
appeared in the ocean. Weeks later, as he lies in the amniotic fluid of the womb, he has gills like a
fish...”

In biology, this idea seems to be no longer believed. Other fields that have proposed analogues
include philosophy, art, anthropology, psychology, and education. Here’s an online example of a
discussion of math educational recapitulation:

http://unlearningmath.com/2009/02/13.

As with the outline I’m undertaking, the educational analogue of ontogeny recapitulating phylogeny
would be that the development of ideas in an individual follows patterns similar to the development
of those ideas over centuries.

My thesis is that this educational analogue is not true if the ontogeny is calculus as we teach
it (Section II), but is true if the ontogeny refers to how students tend to naturally formulate the
ideas of calculus; that is, student’s conceptions and misconceptions of calculus mirror history in their
development (Section III).

My data is based on fifty years of teaching including more than twenty years of homeschooling
my own children and other children. In teaching math to middle school and high school home-
schooled students, the absence of mandatory lock-step curricula enabled me to expose the students
to calculus ideas much earlier than the moment prescribed by educationists. Middle school and high
school students are capable of understanding many calculus ideas; it is mostly shaky algebra skills
that might make enrolling in a college freshman calculus class difficult.

Because of my limited goals, the historical exposition throughout this paper will be sketchy. I
have tried to include detailed references, for those who want more complete history.



I I . O N T O G E N Y i n t e a c h i n g f r e s h m a n ( s i n g l e - v a r i a b l e ) c a l c u l u s . Here is the t r a d i t i o n a l 
order of topics i n w h i c h single-variable calculus is taught i n college, especially t o students beg inning 
a science or engineering undergraduate degree. 

(1) func t i on (precalculus review) 

(2) l i m i t 

(3) c o n t i n u i t y 

(4) derivative 

(5) appl ications o f der ivat ive 

(6) R i emann sums to definite integrals 

(7) Fundamenta l Theorem of Calculus and in tegrat i on techniques 

(8) appl ications of in tegrat i on 

(9) l i m i t of sequence of numbers 

(10) series of numbers 

(11) power or Tay lor series. , 

I I I . P H Y L O G E N Y ; t h a t i s , o r d e r e d h i s t o r y o f s i n g l e - v a r i a b l e c a l c u l u s i d e a s . Here are 
(1)—(11) f r o m Section I I , placed i n histor ical chronological order, based on when the idea appeared. 

M y thesis is t h a t th is phylogeny comes close to the ontogeny of students ' understanding ( th is 
includes the un for tunate ly usually hypothet i ca l category of w h a t they could understand at a given 
t ime) of the calculus concepts numbered i n Section I I . T h r o u g h o u t th i s section, I w i l l be compar ing 
the histor ical development of calculus t o the development of calculus concepts t h a t a student could 

learn. 

(9) A l t h o u g h not f o r m a l l y defined as a l i m i t of a sequence, the idea of m a k i n g a sequence of 
approximat ions a r b i t r a r i l y close to a desired q u a n t i t y goes back at least as far as the classical 
Greeks. Emblemat i c of th is is the Greeks' finding of the area of a disc by a p p r o x i m a t i n g w i t h 
polygons of an increasing number of sides. T h i s was proven by Archimedes ( t h i r d century B.C. ) 
a l though i t was k n o w n before h i m . 

Th is is an idea t h a t students can learn at an early age (the author has worked w i t h home-schooled 
children of middle-school age on this) by l ook ing at a decimal expansion of a famous i r r a t i o n a l , such 
as TT or y/2, or by per forming i terat ions w i t h a calculator. 

(10) Geometric series appear at least as early as Zeno and one of his paradoxes: i n order t o t rave l 
a certain distance, he must first t rave l ha l f the distance, then ha l f of t h a t half , etc. T h e perceived 
imposs ib i l i ty of adding up the in f in i te sum 

E r = i ( i ) =h + ih)+W+-- - t o t rave l t h a t distance 
makes the t r i p seemingly impossible. 

Archimedes studied geometric series, p a r t l y t o find areas related t o parabol ic segments; see (6 ) 
below. 

Engl ish and French mathematic ians i n the first ha l f of the 14th century worked on some in f in i t e 
series, i n c l u d i n g many t h a t were not geometric series (see [3, pp . 91-93] ) . T h i s inc luded showing 
t h a t the harmonic series YlT=i h diverges, by group ing the terms as follows: 

each group i n parentheses is greater t h a n i . 
Regarding students ' ontogeny, the author and home-schooled students as early as m i d d l e school 

the author has worked w i t h have calculated geometric series and applied t h e m to repeating decimals. 

(6) Archimedes used analogues of R iemann sums (triangles instead of rectangles) t o get areas under 
line segments and parabol ic segments (among many other areas and volumes; see [3, Chapter 2] ) ; 
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what we now cal l / ° x dx and /g" dx\s students do today , he used formulas for Xlfc Ẑ fc 'i^^- See 
[5, pp . 111-116], [3, Chapter 2 and p. 109], and [7, pp . 44-47] . 

The " invent i on" of calculus, as credited to N e w t o n and Leibniz independently i n the second ha l f 
of the 17th century, is defined as the discovery of the fundamenta l theorem of calculus. There were 
many calculus results, b o t h i n integrat ion ( t h a t is, i n ca lcu lat ing definite integrals, sometimes called 
quadrature) and d i f ferent iat ion (see (4) and (5) below), d u r i n g the first ha l f of the 17th century. 
See [3, Chapter 4] and [7, Sections 8.2 and 8.4]. Caval ier i got volumes by in tegrat ing cross sections 
(special cases taught i n calculus classes usually include the "disc" method for solids of r evo lu t i on , 
the "disc" referring to the shape of the cross sections) and calculated j\"^dx,n = 1 , 2 , 9 , v i a 

R iemann sums J2kspeculated the general f o rmula for x " dx for a l l nonnegative integra l n , 
which was proved i n the 1630s by Fermat , Descartes, and Roberval ; Fermat also integrated f rac t iona l 
powers. Tor ice l l i produced the solid w i t h in f in i te surface area and finite vo lume y = ^ revolved about 
the x axis. Wal l i s d i d a more "d irect " approach to in tegra t ing f ract ional powers t h a n Fermat ; see 
[7, Section 8.4]. 

Even Cauchy, i n finally creating our modern calculus r igor i n the early 19th century, d i d not 
quite have the f u l l generality of our present R i e m a n n sums. Cauchy's sums had the f o r m 

J2fiXi-i){Xi-Xi^l), 

i 

instead of the f o r m (due to Riemann) 

Y^f{Xi){Xi-X^-l), 

i 

for a r b i t r a r y Xi i n [ x i _ i , X i ] . See [4]. 
Regarding students ' ontogeny, I must again be p a r t l y hypothet i ca l , since they are n o r m a l l y 

exposed to derivatives before integrat ion . W h e n I present in tegrat ion v i a R iemann sums to (home-
schooled) h igh school students, they find the idea simpler t h a n di f ferent iat ion . Area is more i n t u i t i v e 
t h a n rate of change and the idea of a p p r o x i m a t i n g a region w i t h increasingly skinny rectangles, t o 
approximate area, is a n a t u r a l one. 

(4) a n d (5) M a n y derivatives and applications thereof occurred pr i o r t o the " invent i on" of calculus 
by Newton and Leibniz , as described under (6 ) above. 

I n the early 14th century, a sort of prederivative, veloc i ty and m o t i o n w i t h u n i f o r m acceleration, 
was studied (see [3, pp. 86-93]) by many of the Engl ish and French mathemat ic ians ment ioned under 
(10) i n the t h i r d paragraph. T h i s was an adventurous improvement over the classical Greeks, w h o 
studied m o t i o n on ly w i t h constant velocity. I n terms of analogous ontogeny of a ( future) student , 
the author recalls not i c ing , as a ch i ld , t h a t a car i n m o t i o n could s t i l l have something constant, 
namely the speedometer reading. Constant acceleration (felt as a constant pressure on the chest) 
along w i t h a changing speedometer reading could have been introduced. 

W o r k on b o t h tangent lines, and m a x i m a and m i n i m a v i a sett ing a der ivat ive equal t o zero, 
appeared i n the early 17th century, i n work by Fermat , Caval ier i , and Wal l i s ; see [ 1 , pp . 153-162], 
13, pp. 122-123], and [7, pp . 103-104]. 

See [4], especially "The Debate over Foundat ions , " pp . 31-36, where the func t i on f { x ) = x^ 
is focused on i n par t i cu lar , for very interest ing descriptions of a t t empts t o define the der ivat ive 
rigorously, especially i n the 18th century. 

(7) a n d (8) Most of the calculus techniques taught i n freshman calculus classes were developed 
by Newton and Leibniz i n the second ha l f of the 17th century. 

Newton defined on ly derivatives w i t h respect t o t i m e , denoted by a dot over the func t i on being 
differentiated, e.g., y for the t i m e derivat ive of y. For slope of the tangent l ine t o the graph of a 
funct ion y = f { x ) , he used |. Leibniz developed the more general no t i on of the der ivat ive of one 
variable w i t h respect t o another; he called the slope of the tangent l ine j u s t ment ioned the 
derivative of y w i t h respect t o x. Note how Leibniz 's n o t a t i o n makes Newton 's f o rmula for slope of 
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a tangent l ine believable: 

X ^ dx' 
dy 

the chain rule appearing t o be no more mysterious t h a n cancelling fractions. 
Newton 's a t t e m p t t o make calculus rigorous had velocities as a first pr inc ip le ; th i s is analogous 

to students t h i n k i n g of derivative or rate of change on ly meaning velocity. 
I t is interest ing t h a t the greater emphasis on appl icat ions due to N e w t o n gave his approach 

more p o p u l a r i t y at the t i m e , jus t as i t appeals more t o students learning calculus now. However 
Leibniz 's generality and excellent suggestive terminology , b o t h for derivatives and integrals , made 
his f o r m u l a t i o n the m a i n vehicle for extending and a p p l y i n g calculus i n the 18th century. 

(11) I f convergence is not a concern, in f in i te sums need not seem t h a t much different t h a n finite 
sums, a branch of algebra (see [4, Chapter 2]) . T h i s was the out l ook i n the pre-Cauchy days of 
calculus; for example, N e w t o n used many functions represented as a (usually in f in i te ) series. 

T h i s certa inly coincides w i t h students ' first i n t r o d u c t i o n t o in f in i te sums and makes i t pedagog-
ical ly desirable, soon after in t roduc ing the f o rmula for sum of a geometric series 

E 1 - r ' 
fc=0 

to insert r = 2 in to th i s f o rmula t o get the amazing result 
oo 

l + 2 + 4 + 8 + -- - = ^ 2 ' = = - l . 
fc=o 

Since algebra brings the po tent ia l for r igor , Lagrange, i n the second ha l f of the 18th century, 
used Taylor series t o define derivatives (see [4, p. 39], [2, pp . 296-8]): I f 

oo 

fix) = ^ a k i x - c ) ' ' , 

k=0 

then the j " * der ivat ive of / at c by definition is 

f^'\c)^j\aj. 

I t is interest ing, and , again, consistent w i t h students ' evo lv ing ideas, t h a t i t was assumed t h a t 
any continuous func t i on has a Taylor series. See [2, p. 267]. 

( 2 ) , (3) T h e modern "e-J" de f in i t ion of l i m i t of a func t i on , hence de f in i t ion of a continuous func t i on , 
d i d not appear u n t i l the early par t of the 19th century, introduced independently by Cauchy and 
Bolzano. 

Ideas of l i m i t s , as w i t h approx imat ions , appeared i n the early days of calculus, e.g., d ' A l e m b e r t 
spoke of a der ivat ive as a " l i m i t of a r a t i o " ([3, pp . 295-6]), b u t d i d not give a de f in i t i on of l i m i t . 
Newton essentially ta lks about l i m i t (really a supremum) , b u t doesn't define i t . 

The first example of a continuous b u t not differentiable func t i on appeared i n 1834, due t o 
Bolzano; see [2, p. 269]. For students as w i t h mathemat ic ians histor ical ly , th i s is a subtlety . 

I n an incomplete b u t developing idea, Euler uses the w o r d "continuous" t o mean more "con
t iguous" (consistent w i t h students ' first impression). 

(1) Our modern idea of func t i on , as taught i n a freshman calculus class, d i d not appear u n t i l the 
late 19th century, when Di r i ch le t defined i t as a map t h a t assigns t o each po in t i n the d o m a i n a 
unique po in t i n the range. 

I n the 18th century, a funct ion meant an expl i c i t f o rmula , sometimes an in f in i t e series. T h i s is 
consistent w i t h students ' first impression; a funct ion defined i n t w o pieces (e.g., f { x ) = x^ for x > 0, 
/ ( x ) = X for X < 0, is often perceived by students as being two funct ions) . 

One source of the need to generalize the idea of func t i on is described i n 14, pp . 89-90] : i f a 
funct ion was defined only as the so lut ion of a di f ferential equation, i t m i g h t not have an expl i c i t 
representation. 
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I V . S O M E C O N C L U S I O N S . I don ' t see t h a t i t ' s au tomat i ca l l y necessary or desirable for teach
ers t o repeat history , i n choosing the order or style of presentation of ideas. The s i f t ing and re formu
l a t i o n of ideas t h a t occurs over t i m e does create more unif ied and s impli f ied approaches t h a t mean 
b o t h greater and more efficiently acquired understanding. 

B u t there is the same lesson f r o m history of ideas t h a t one should get f r o m any h is tory : t h a t 
events are not inevitable . I n i t i a l expressions of ideas, i n par t i cu lar , need not be i m m u t a b l e . C o m 
par ing the order ing i n Section I I t o t h a t i n Section I I I demonstrates t h a t even the order o f ideas can 
change considerably. 

Something I object to i n much m a t h teaching is the i m p l i c i t air of things being precisely pre
ordained. Rather t h a n ideas t h a t anyone can and n a t u r a l l y w o u l d create, th i s style of teaching 
presents a t o t a l i t a r i a n monotheism of ideas, and the i r order of presentation, t h a t must be force fed 
to students. T h i s misconception of mathemat i ca l creation is very s imi lar to the phrase "settled 
science," recently made popular by a u t h o r i t y figures a t t e m p t i n g t o use misrepresentations of science 
for p o l i t i c a l ends. Even as th is short note is being w r i t t e n , the latest incarnat ion of the n a t i o n a l l y 
centralized pseudo-scientific educational theocracy is impos ing standardized methods o f solutions of 
mathemat i ca l problems; th is is an in f in i te ly into lerant con formi ty of thought completely counter t o 
the sp i r i t of m a t h . 

A small infusion of the h is tory f r o m Section I I I i n t o calculus classes wou ld have psychological 
and pedagogical benefits. The teacher benefits by ge t t ing clues about w h a t the i r students are 
t h i n k i n g . Students wou ld f ind i t qui te reassuring t o hear t h a t the greatest mathemat ic ians had the 
same confusion and misunderstanding i n their i n i t i a l a t t empts t o understand t h a t they do. Even a 
superficial knowledge of the h is tory of ideas w o u l d help students t o see they should be f o r m i n g ideas 
themselves rather t h a n b l i n d l y obeying or absorbing someone else's ideas. A t least as short asides, 
historical notes about the h is tory of the ideas w o u l d remove much of the i n t i m i d a t i n g , and most ly 
unnecessary, alienness of the subject. 

A more radical suggestion is t o devote the first lecture o f a calculus class t o t w o calculations, i n 
a pre -Newton /Le ibn iz style, as i n Section I I I (4)—(6) : 

C a l c . I . T h e instantaneous rate of ascent, at a p o i n t , when w a l k i n g up a paxabplic hi l ls ide; and 

C a l c . I I . T h e area between y = x'^,y = 0, and x = 1. 

For C a l c . I , say our hi l ls ide has the shape y = f { x ) = x'^, and we want the (instantaneous) 
rate of ascent at x = 3 (see d r a w i n g below.) ^ 
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A l l the student needs is the def in i t ion of slope of a stra ight l ine: "rise over r u n " = where 
" A " means change. One approximates the rate o f ascent at a; = 3 by ca lculat ing the average rate of 
ascent over the interval [3, 3 + Ax] 

Ay _ / ( 3 + Ax) - / ( 3 ) 

A x A x 
w i t h the a p p r o x i m a t i o n i m p r o v i n g as A x gets smaller: 

A x 1 Ay = {3 + A x ) 2 - 32 1 ^ 
1 Ax 

1 1 
0.1 

0.01 
0.001 

42 - 32 = 7 
( 3 . 1 ) 2 - 3 2 = 0.61 

(3.01)2 _ 32 ^ 0.0601 
(3.001)2 - 32 = 0.006001 

(9 + 6 A x + ( A x ) 2 ) - 9 = 6 A x + ( A x ) 2 

1 7 
6.1 

6.01 
6.001 

6 + A x 

A t th i s po in t , one m a y gesture at the sequence 7 ,6 .1 ,6 .01 ,6 .001 , and say i t sure looks l ike i t ' s 
approaching 6. Or one may in fur ia te the early crit ics of calculus (see [4], especially Berkeley) , by 
l e t t i n g A x equal zero i n the expression ^ = 6 + A x . T h e w o r d " l i m i t " (as A x goes t o zero) could 
be ostentatiously spoken at th is po int . 

For C a l c . I I , a l l students need is area of a rectangle (base t imes height) and the f o rmula 
(known, e.g., t o Ar i s to t l e ) 

^^fc2 ^ ( ^ 2 ̂ 2 2 + 3 2 + 4 2 + 5 2 + --- + n2) = ( l + 4 + 9 + 16 + 25 + • • • + n2) = " ^ " + ^)^(^^ + ^ ) . 

One approximates w i t h n rectangles of equal w i d t h , upper r i g h t vertex on the curve y = x'^, w i t h 
the a p p r o x i m a t i o n i m p r o v i n g as n gets larger (see d r a w i n g below) . 
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T h e sum of the areas of the n rectangles described and d r a w n may be s impl i f ied in to a single 
expression; we calculate height t imes base, going f r o m left t o r i g h t : 

j ^ \ n / n y\nJ n \n/ n \nJ n \nJ n \ n J nj n-* ^ 

- 1 f > . 2 _ ( n + l ) ( 2 n + l ) 

n = number of rectangles ^j^^ _ {n+l ) (2n+l ) 
area g^j 

1 1 2x3 1 
6 - 1 

2 1 3x5 _ 5 
24 ~ 8 

10 1 11x21 231 
600 600 

100 1 101x201 20,301 
60,000 60,000 

1,000 1,001x2,001 2,003,001 
6,000,000 ~ 6,000,000 

Staring at the areas as n gets larger m i g h t convince the student t h a t they get a r b i t r a r i l y close t o |. 
A l ternat ive ly , one could expand the numerator i n the f ract ional expression for the area: 

( n + l ) ( 2 n + 1) _ 2n2 + 3 n + 1 _ 1 J _ J _ 
6n2 ~ 6̂ 2̂ ~ 3 " ^ 2 ^ " ^ 6 ^ ' 

and use a calculator t o believe t h a t the last two fractions get a r b i t r a r i l y smal l as n get large. 
Exaggerated proc lamations of the w o r d " l i m i t " can also be made here, w i t h the observation t h a t 

th is is a l i m i t as n goes to in f in i ty , whereas the pr i o r l i m i t was as a q u a n t i t y ( A x ) goes t o zero. T h e 
a b i l i t y t o d iv ide by zero or i n f i n i t y should be assigned significant myst ica l respect; students should 
be warned t h a t i t is a super power, t h a t brings w i t h i t super responsibi l ity. 
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