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DEFINING ORTHOGONALITY LEADS TO DEFINING ANGLES
Ralph deLaubenfels

ABSTRACT. A reasonable definition of orthogonality in a normed vector space leads, via orthog-
onal projections, to two natural definitions of angles between pairs of vectors, one definition with
cosine, one with cotangent. Having these definitions coincide is equivalent to the vector space having
both the orthogonality and the norm defined by the same inner product < - > . We then have the
familiar definition of angle and orthogonal projection: the angle between a and b defined by

os! <<_fl’ b_,>> (%)
a]l][®]

and the orthogonal projection of b onto @ given by

- <ba>\ .
P)(b7 a) = (”(_]:”2) a.

It is shown that this construction of angle from orthogonality provides a very simple proof of the
agreement of (*) with any reasonable definition of angle in the plane. This emphasis on orthogo-
nality provides natural motivation for the inner product immediately upon its introduction. One
consequence of this approach is a short, natural and geometric (Pythagorean theorem) proof of the
Cauchy-Schwarz inequality.

I. INTRODUCTION. Orthogonality rivals calculus both in applicability and conceptual signf-
icance in mathematics, statistics, and physics. In normed vector spaces, orthogonality is usually
realized via an inner product, which then can be used to define the angle between any pair of vectors
with (*) of the Abstract; as a special case, two vectors are orthogonal when their inner product is
Zero.

But in introducing the inner product, or, more generally, any notion of angle between vectors,
it is easier and more natural and motivated, to begin with orthogonality, even though it is merely
one particular angle (7). We begin by listing desirable properties, O1-6, of orthogonality. These
properties are sufficient to define orthogonal projection, which in turn is sufficient, via right triangles
or unit circle, to define angle between a pair of vectors. In fact, angle may be defined with cosine or
cotangent. The less familiar cotangent definition has better properties, in general. We spend much
time exploring potential bad behaviour, via examples, of these definitions of angle, and present
admittedly incomplete and tentative good behaviour. Section II culminates (Theorem 2.17) with a
characterization of orthogonality relations that arise in the usual way from an inner product that
also determines the norm: it is equivalent to the cosine and cotangent definitions just mentioned
agreeing, and is also equivalent to the Pythagorean theorem being valid.

Section III is purely pedagogical, suggesting that the inner, or “dot,” product be introduced by
starting with orthogonality and the Pythagorean theorem.
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II. ORTHOGONALITY TO ANGLES. Assume throughout this paper that V is a normed

real vector space. Denote O(@,b) as shorthand for “G is orthogonal to b” (@,b € V). Consider the
following desirable properties of O. ~

01. O(d,b) implies O(b, @).
02. O(a, b) implies O(@, sb), for any real s.
03. 0(d,b), 0(@,é) implies O(a, (b + &)).
04. O(d,d) if and only if @ = 0.
0O5. For any @ and two-dimensional subspace W containing @, there exists nontrivial ¢ € W such
that O(a, c).
06. O(d,b) implies
llall < lla+b]|.

Note that Ol is stating that the relation O is symmetric, O2 and O3 that, for any @, the set

of all vectors orthogonal to @ is a vector space, while O5 is guaranteeing an adequate supply of
orthogonal vectors. O6 relates orthogonality to norms.
Definition 2.1. If V satisfies O1-4 and @,b € V, then the (orthogonal) projection of b onto @,
denoted P(b,a@), is ta, where t = t(b, @) satisfies O(a, (b — td@)). The component of b in the direction
@, denoted C(b, @), is t||d||.

Note that O2-4 imply that (b, @), if it exists, is unique.

A

e

Proposition 2.2. Suppose V satisfies O1-4.
(a) O5 is equivalent to P(b,d) existing, for all @b in V.
(b) Under O5, O6 is equivalent to
IP®,a) < |I6], va,b.




Proof: (a) Suppose 05 holds and @,b € V. If @ and b are collinear, then P(b,a) = 0.

If @ and b are not collinear, let W = span(d, b) There exists ¢ € W perpendicular to @. There

exist scalars aq, as so that o
C = a1d + aob,

which implies
1 o -
—C— —a=b,
9 02

— o= . ~ (7 — e > 1 . . — -
so that —g1d = P(b, d@), since O(@, (b — (—32d))) = O(@, 55¢) = 0, since O(a, ) = 0.

Conversely, suppose P (l_;, a) exists for all @, beVand suppose @ € V and W is a two-dimensional
subspace containing a. There exists b € W so that W = span(a, b); choosing ¢ = (b— P (b, @)) satisfies
05.

(b) Suppose 06 holds. Then, for any @,b € V,
6]l = 1P, @) + (b~ P(,@)]| > | P@G,a)l,
by orthogonality. . N
Conversely, suppose ||P(b,a)|| < |b||, for all @,b € V. If @ and b are orthogonal, then @ =
P((@+b),a), thus
lall < ll@+ b,
as desired. a
Definitions 2.3. Suppose < - > is an inner product on V. The orthogonality relationship on V is
determined by < - > if
O(a,b) <= < a,b>=0.
The norm on V is determined by < - > if
ld|? =< a&,@>, VaeV.

Remark 2.4. If the orthogonality is determined by the inner product < - >, then O1-O5 are
automatically satisfied, with ¢ from Proposition 2.2(a) and Definition 2.1 given by

<a,b>

<a,a>

If the norm is also determined by < - >, then O6 also follows, from the Pythagorean theorem. See
Theorem 2.17 for a partial converse; see also Open Question 2.18.

t(b, @) =

Counterexample 2.5. Most orthogonality relations satisfying O1-5 do not come from an inner
product. For a class of counterexamples, let’s focus on V = R?, with (1, 0) orthogonal to (0, 1).

Let ¢ be any injective map from (-7, 7] to itself such that ¢(0) = % and, for all § €
(=%,5]. ¢ (¢(0)) = 6 and ¢(6) # 6. Define an orthogonality relationship O, by

Oy ((cccos by, Bsinby), (5 cos bz, sinbs))
if and only if

aBf=0 or ¢(6)=0s.




Only very particular functions ¢ will produce Oy that is determined by an inner product. Since

(1,0) and (0, 1) are orthogonal, any inner product < - > will have the form
< (a,b),(c,d) >=ac < (1,0),(1,0) > +bd < (0,1),(0,1) >
so that, letting
_ <(1,0),(1,0) >
w=——12- 17
<(0,1),(0,1) >
(a,b) is orthogonal to (c,d) if and only if
bd = —wac.
Letting (a,b) = (cos6,sin b)), (¢, d) = (cos b2, sinby), orthogonality is equivalent to
sin ) sinf; = —w cos B cos By or tanfy = —w cot 6.

Solving for 62, this implies that the orthogonality relationship Oy is determined by an inner product
if and only if

tan~!(—wcotf) 6 #0
$(0) =
0=0

SR

for some positive w.
The following illustrates how much O6 intertwines orthogonality and norm.

Proposition 2.6. If the norm of V is determined by an inner product and O1-6 holds, then this
inner product also determines the orthogonality of V.
Proof: Denote by < - > the inner product determining the norm of V.

Suppose @ and b are orthogonal. Then by O6

|@||% + s2||B]|2 + 25 < @, b >= ||@ + sb|| > ||@]|? for all real s;

a simple minimization argument shows that this implies that < @, 5 >= 0.
We must also show the converse, that < @, b5 >= 0 implies @ and b are orthogonal

For t = t(d, b) as in Definition 2.1 (see Proposition 2.2), since (b—ta@) = (b—P(b, @) is orthogonal
to @, we now know that

0=<b- P(h,a),d >=<b,d> —t(b,d) < d,d >,

so that B
— b’ a s b
t(b,a) = N - (_l,> or P(b,a) = <—a—>a
<d,a> <a,a>
In particular, if < @,b >= 0, then P(g @) = 0, so that @ is orthogonal to b. a
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The picture after Definition 2.1 and the definitions of cosine and cotangent lead to the following
definitions of the angle from b to a.

Definitions 2.7. For a, b nontrivial, N
6, (b, @) = cos™? (%) ( when defined ).

wan N C(b, @)
9 b,(l = t 1 —————— &
= (u(b—P(b,a))u)

Note that O6 is equivalent to 6; (ﬂ, @) being defined for all @, b (see Definition 2.1 and Proposition
2.2).

Remark 2.8. If V has both the norm and orthogonality determined by the innner product < - >,

then (see Remark 2.4)
01 (51 c'i) = COS—1 (<f, b_,>) = 01(63 g)
llallloll

<ab>
02(b, @) = cot™! = a,<~5> s
lalllb — Szp=-all

which, by the Pythagorean theorem, equals 6; (b, @) (see proof of Theorem 2.17(b) — (d)).

and

Since we will soon see that # may be very poorly behaved, it seems appropriate to mention one
good property guaranteed for 6.

Proposition 2.9. For j = 1,2,

Proof: Since

t(b, @)@ = P(b,@) = P(b, —a) = t(b, —a)(—a),
t(b, —a@) = —t(b, @).
This implies that
on6 91(5, —(_]:) = t(by _I‘|]‘g’|||| - a” — _t(b“ai;a“)”a“ et 01 (l_)‘, c_l,)’

which implies that
Hl(b, fi) + 91 (b, —l_J:) =T.
An almost identical argument shows the same result for 5. O

In Example 2.10 and More Examples 2.13(a), we will see how badly behaved 6;,j = 1,2, can
easily be.
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Example 2.10. Let V be R? with orthogonality defined in the usual way: @ = (a1, a2) is orthogonal
to b= (b1, be) iff

0=a-b= (a1by + ashy). K
For nontrivial real z,y, define

a= (:t,O),g_=_ (z,9).
Proposition. (1) 6;(@,b) = 6 (b,d) <
I »II* = (=% +¥*)1(1,0)|
(2) 02(@, b) = 62(b, @) <

I 9l _ 0]
16— ~ [

(3) 61(b,@) = 05(b, @) <>
Iz, 9)II* = 2®[I(1,0)[1* + ¥*|1(0, 1)||*.
Note in particular that (1) implies (2) and (3), since (1) implies that ||(0,1)|| = ||(1,0)||. Assertion
(1) also implies that the same inner product is determining both the norm and the orthogonality
relationship.

Proof of Proposition: Clearly P(E, @) = d, while a calculation shows that

Bt
P —‘, = = ) ’
@b = @)
so that -

a— P(d,b) = W(y, =Zz).

3 7

6_{ 1
X
Thus
= o |l(z,0) _ =z||(1,0)] i _ - |P@b)| z  |(z,y)l
8,(5. @) = ! e 0,(a,5) = 12@ O _ ,
o st T Tl e ©2h@0) = = o)
so that (1) follows. Also
= o |l(=,0)]] =z [|(1,0)] . I | P(a,b)| z |[(z,y)|l
t85(5,d) = ~ & hile cot (G, ) = l__= ,
SRR while  cota(@.0) = PGB 1@ o)

ol ylo D)
giving us (2).




For (3), denote, for j = 1,2, §; for Oj(g, @). Then

lla@|*
lla]? 2 2 cos” 6 [ ~ |la]’?
61 =6, — f=(§0t 6y = cot“ 0, = = — = —= =
|6 — al|? 1—cos?01 11— H; el — llal|?
| (z,0)]? Il (=, 0] 2 2 2 2 2.2 2
= = <= Iz, 9 = lI(z,0)[*+I(0,y)[I* = =*I(1, 0)[*+¥*[|(0, 1)||*.
10,12 I »I2 = lI(z,0)] |

O

Note that the norm in (3) of the Proposition above is determined by the inner product
< (z1,11), (x2,y2) >= z122(|(1, 0)||* + y12(|(0, 1) |*.

Proposition 2.6 now implies that, in order that O6 hold, [|(1,0)|| must equal ||(0,1)]|.

Here are some particular choices of norm.

(a) First take the norm defined by the inner product

< @,b>=2a1by + ashs : I(z, )||? = 222 + 4.
Then
.z [(222432) } - Vo
cot Oz(d, b) = v\ @t while cotf(b, @) = —
not equal.

e T g, 15 . = 22
cos 0, (@, b) = :rz—+y? 2 + ¥ while cos 6, (b, @) = Y +y2;

also not equal.
02(b, @) = 61(b,d@), but 02(d,b)# 6:1(a,b).
Thus even in a space with norm and orthogonality determined by inner products we see not-so-good

behaviour of #; and 65, because the inner product determining the norm is different than the inner
product determining the orthogonality.

Note that, by Proposition 2.6, 06 must fail, for some @, b in R2. An example is
a=2(1,1), b= (-1,1);
then d@ is orthogonal to 5, but
lal* =12, lla+ b)1* = [I(1, 3)||* = 11.

(b) Take the £*° norm

|(z, y)|| = max |z], |yl.
Then

02(a@, b) = cot ™ G) = 0,(b, @),
while, for |y| < z,

2
- x =
61(@,b) =cos™! | —— |, 61(b,@)=0.
@b =t (55—), 660
The value of zero for 01(5, @) is particularly counterintuitive: an angle of zero between @ and b, with

neither vector a multiple of the other. Do we call @ and b parallel because the angle between them
is zero?

(c) Now take the ¢! norm
I, )l = || + [yl.
Then again

02(d@, b) = cot ™ (g) = 0,(b, @),
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while, for |y| < z,

d,b) = cos™1 M B — cos—l z
0:1(d, b) = cos <$2+y2>’ 01(b,d) = cos <x+y>' ~

For a very familiar special case, take z = y > 0, so that

61((1.1). (1,0) = 615, = cos™ (JET) = cos() = 3

while

11
01((1,0), (1.1)) = 63@F) = cos~* (L) = cos(]) =0

besides again producing an angle of zero between two vectors that are not collinear, this illustrates
that 6; is not symmetric; that is, 01(5, @) does not equal 6 (d, 1';')_ We have also seen above that 6 is
not symmetric.

0, also fails to be additive: again with z =y > 0,

m@&+m@j—a=0ﬂLm4Lm+&«LumJ»:§+m§1qgfm):

T T,

1t373
= 61((1,0),(0,1)) = 61(@, b — @).

It is interesting that 6 is additive in a sense very similar to that just mentioned.

Proposition 2.11. Suppose V' is a normed vector space with an orthogonality relation O satisfying
0O1-5. Then " T
O2(a+b,a) +62(d+b,b) = =

)

[\

whenever a is orthogonal to b.

g’ (&j-l'C)

N S
=
a
Proof: For a orthogonal to 5,
cot (02(Ei+ b, Ei)) = — ||{3(a+ l_)" a)ﬂ — = M;
l@+b—P@+b,a) bl
similarly,
S T Bl
cot 02(a+b,b) ES e,
( ) llall
Since o
cot (02(0. + b, a)) cot (02(6+ b, b)) =1,
(92(5+ b, 5)) - (02(&' + l_;, _‘)) = 7 (using the trig identity cot(¢ + 1) = %%;t%l) O
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We shall see (Theorem 2.17) that having ; be symmetric and additive is equivalent to V having
an inner product that determines both the orthogonality and the norm.

The following is essentially a consequence of (3) of the Proposition in Example\2.10.

Proposition 2.12. If the orthogonality relation O is determined by an inner product and

0:(b,@) = 61(a, b)
for all @, bin V, then there exists an inner product that determines both the norm and the orthogo-
nality of V.
Proof: Denote by || - || the norm in V, and by < - > the inner product that determines the
orthogonality in V. To show that the norm of V' is determined by an inner product, it is sufficient
to show it satisfies the parallelogram law. So fix @, b € V. Define
(b P(b,d))

=

Then < 0,7 >=< w,w >= 1 and < 9,% >= 0 (equivalently, ¥ is orthogonal to w in V). Define
U : R? — span(a, b) by
U((z,y)) = (20 +yw) (z,y €R).
Have R? inherit the norm and orthogonality of V:
Iz, 9)l = IU((z,9)llv, (21,31) orthogonal to (z2,y2) <= < U((z1,%1)), U((22,¥2)) >=0.

A calculation shows that
<U((z1,41)), U((z2, y2)) >= 2122 + t1y2 = (x1,%1) - (22, %2),
the usual inner product in R2, thus we have the usual orthogonality in R?, as in Example 2.10.
01((z,y), (z,0)) = 6:(U(z,y),U(z,0)) = 6:(U(z,0),U(z,y)) = 61((z,0), (z,y)) for all nontrivial real z, y,
by hypothesis. By (1) of the Proposition in Example 2.10, for any real z,,
lz7+ % = 1U((z, I = (@, 9)11? = (@ +°)I(1,0)[* = (= +¥*)|U((1,0)]1*"= (=2 +?) |53
=< (27 4 y), (20 + yw) >o,
where the inner product < - >5 is defined by
< (210 + W), (220 + yob) >2= 21227]|* + 192 (21, 22,%1,%2 € R).

In particular, this shows that span(a, 5) has its norm determined by an inner product, hence satisfies
the parallelogram law:

@+ Bl + 1@ — Bl12 = 2 (lla)1> + IB]?)

Since @, b are arbitrary vectors in V, this shows that the norm of V is determined by an inner product.
The remainder of the proposition follows from Proposition 2.6, after we observe that O6 is satisfied
since 61 (d, b) is defined for all @, b in V. O

In Examples 2.13, (a) gives more examples of badly behaved angles, while (b) demonstrates bad
behavior of orthogonality.

More Examples 2.13. (a) Take the usual orthogonality in R?, as in Example 2.10, and define

dzgﬂJ% b=(2,1).
Then
P@@z%@UJ—P&@z%@—u mam:&a-maﬁ:%(Ln
thus
N (0] -\ 3l O (3] SO 1 (693
cos (01(a,b)) = —%”(1,1)”, cos (01(b, a)) =z cot (02((1, b)) = —%“(_1’2)”, cot (Gz(b, a)) = —%”(1’ v




10

as drawn below.

i
e 2-p(<,
Uop(bal AT

3/?.Ull) (Zl')

61(b,@) = 0,60,(@,b) = cos™! (1%) 02(b, @) = cot~1(3) = 6a(a, b).

In. =2,

—.

6 (b,d@) = cos™! (%) ,01(d@, b) is undefined, - (b, @) = cot ™ (3) = 62(a@, b).

(b) When leaving the usual orthogonality of Example 2. IO it is surprisingly difficult to get all of
01-6 satisfied. It will simplify discussion to write

(z1,91) - (T2, ¥2) = 2122 + Y172
for the usual inner product in R?, defining the usual orthogonality
Z orthogonal to ¥ <= -y =0.
Consider R? with the /7 norm

I, 9} = =P + |yl?,
for 1 < p < 0.
In defining O((z1,91), (2, ¥2)), to get O6 we need (z2,y2) parallel to the level curve

9(z,y) = |z + [y = [z, )17 = | (z1, y1)II5
for 1, > 0 since the gradient of g(z,y) = 2P + y? is Vg(z,y) = (pzP~ !, py?~ 1), we need, since
W =2t - Vg(a1, 1) =0,
(z2,y2) a multiple of (7", —22~ ).

However, for p # 2, this definition of O((z1,v1), (z2,%2)) does not satisfy O1, in general.
Take, in particular, p = 1. The largest relation satisfying O6 (it also satisfies O2 and O4) has

O(a,t(1,—1)) (t real ) for @ in the closed first or third quadrant zy > 0;
O(a,t(1,1)) (t real ) for @ in the closed second or fourth quadrant zy < 0.

Notice that this orthogonality relation does not satisfy O3; for example, if @ = (1,0),5 =
(2,2),é= (1,-1).
For the sake of counterintuition, consider, as in Example 2.1C '

a=(1,0),b=(1,1).
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Then P(l_;, @) appears to equal 2d, since b—23 = (-1,1)

=cos™! M =0 B
) (nEH) ’

Sl
ot () = 2.
LT/ ~ 4

On the other hand, b is orthogonal to @, so P(b, @) should equal
The largest relation satisfying O2-6 has

O(a,t(1,—1)) (t real ) for @ in the open first or third quadrant zy > 0;

Q

6, (b,

while
0(b, @) =

Q

O(a,t(1,1)) (t real ) for @ in the open second or fourth quadrant zy < 0.
In order that O satisfy both O1 and O6, it would consist, in its entirety, of
O(s(1,1),t(1,-1)),0(s(1,—1),t(1,1)), s,t real .
It is not hard to see that O5 would then fail.

Before focusing on ideal behaviour, let’s relate symmetry of 6> to geometry of 6.

Proposition 2.14. Suppose @,b are vectors such that @ = P(b,d@) and 6,(b — @,d — P(a,b)) and

-,

01(d, b) are defined. Then
02(@,b) = 0a(b, @) < 61(b—a,a— P(

Sl

o

=
I

6,(a,b).

?‘” e

s

Proof: B
IP@@o)| _ llall

l@—P(a,b)| [b—ad

= cot (02 (5, Ei))

if and only if

Definition 2.15. (V,O) satisfies the Pythagorean theorem if
& +b]|* = [|al* + [|b]?
whenever @ and b are orthogonal.

Note that O6 follows from the Pythagorean theorem.




The following is surely well known, but its proof is included for completeness.

Lemma 2.16 If V satisfies the Pythagorean theorem, for some O satisfying O1- 5 then the norm
of V' is determined by an inner product.

Proof: It is sufficient to prove the parallelogram law
@+ 8117 + 1 - 8112 = 2 (1@ + 18]) -
Denote by ¢, the unique number from O5 such that
(b — t,@) is orthogonal to @;
by t_ the unique number such that
(=b— t_a) is orthogonal to a;
that is, P(b,@) = t,a, P(—b,d) = t_a.
In the picture below, notice that
(@+b) — (@+ P(b,@)) = (b— P(b,a)),
thus = _,
P((@+b),d)=d+ P(b,a).

By the Pythagorean theorem,
1@+ = la+ P®,a)|? + 16— P(5,a)|?

and .
1Bl* = || P(b,@)||* + [|b — P(B, )|
subtracting gives
1@+8) 1> = |1Bl|>+l|a+P (b, @)|>— | P(5, @)||* = 1B]1>+]| 1+t )a@l|>—[lt+@2 = B>+ [(1 + t4)% — t3] lla|?

= [IBlI* + (1 + 2¢) @]

Identically,
A 1@ = B)I1% = (1811 + (1 +2¢-)|| %,
so that
@+ B2 + 1@ — 8112 = 2 (L + 4 + ¢-) 112 + 15]) -(+)
By 02, (b + t4 @) = —(b — tyd) is orthogonal to @. Thus ¢t = —t,, so that (*) implies the

parallelogram law.
Since the norm of V satisfies the paralleogram law, it is determined by an inner product. O
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Theorem 2.17. Suppose (V,0) is as in O1-5. Then the following are equivalent.
(a) 6,1(a+ b,@) + 01(a + b,b) = %, when a is orthogonal to b, @, b nontrivial.
(b) (V,0) satisfies the Pythagorean theorem.

(c) There exists an inner product < -,- > that determines both the norm and the orthogonality
relation on V.

(d) 61 (b, @) = 02(b, @) for all nontrivial @b in V.
If any of (a)-(d) hold, we then have, for any @,b in V, the orthogonal projection of b onto @

given by
= <b,d>
PEay =222 )a
) ( P )

Proof: For the equivalence of (a) and (b), assume @ is orthogonal to band @ = (@+ b). Let
1 = 01 (C, @), p2 = 61(C, ).
Then, applying cosine to both sides, (a) is equivalent to
cos(¢1) cos(¢2) = sin(¢q) sin(¢p2);
squaring both sides, this is equivalent to
cos?(¢1) cos® () = (1 — cos?(¢1))(1 — cos®(¢2)) =1 — cos?(¢1) — cos*(p2) + cos?(¢1) cos®(¢2),

or

~

cos?(¢1) + cos?(¢p2) = 1;
by definition, this is equivalent to

1PN |, (1PEhI\ _ la® | B2
= (55 )*( Ei )‘nan”uau?’

€% = llal® + 1B]1?,

which is equivalent to

the Pythagorean theorem.

(b) — (c). The existence of an inner product < - > that determines the norm of V follows from
Lemma 2.16. (b) also clearly implies O6. Proposition 2.6 now gives us (c).
(¢) — (b) follows from
la@l|® + 2 < &b > +b]|> = l|la + b]|*.
(d) — (a) follows from Proposition 2.11.
(b) — (d). The Pythagorean theorem implies that

162 = |1P(5,@)|* + |15 — P(5, @),

thus
N - 7 2 2 _ j«z 7 _ ‘:»2
i (06.0)]* =1~ s (4 G0)] =1 - LGN _ WP IPGAN _[5- PO0)
so that
cos b,d C(5.a) 7o
2} (el(b’ )) - (nbn) __ Cp,a) _ 2
(069) = ) ~ () - 5

as desired. O
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Note that (a)-(d) of Theorem 2.17 all imply O6; recall in particular that 6; (b, @) being defined
for all @, b is equivalent to O6.

N

Open Questions 2.18. Suppose O1-6 are satisfied.

(1) Does there exist an inner product that determines orthogonality in V? Recall (Counterexample
2.5) that O1-5 do not imply such an inner product.

(2) Must the norm in O6 be determined by an inner product?

(3) If orthogonality is determined by an inner product, must the norm in O6 be determined by an
inner product? (Compare with Proposition 2.6).

If (2) is true, Proposition 2.6 implies (a)—(d) of Theorem 2.17.

III. A SMALL BIT OF PEDAGOGY ABOUT THE DOT PRODUCT. There appear to
be two standard methods of introducing the dot (also known as inner) product, at least in R3.
One approach is geometric:

@-b=|d|||b| cosb (),

where @ is the (smaller) angle between @ and b.

This definition makes sense only when angle makes sense, which is really only in R2. In R3, one
could sketch the plane containing @ and b and pretend it’s R2. In R™,n > 3, this definition does
not make sense. For the vector spaces of most interest, the infinite-dimensional ones, this definition
definitely makes no sense; what is the angle between two functions on [0, 1]?

This definition is also unmotivated; angle might be of interest and norm might be of interest, but
why make this particular combination of angle and norm into a formal definition? When one relates
the dot product to orthogonal projections and components, it might become of interest just because
orthogonal projections and components are of interest, in physics and minimization problems. But
the item of interest is orthogonality, that is, the particular angle of 55 it seems unmatural to insert
arbitrary angles into a definition that appears to be used only for the angle of .

The second approach is algebraic:

(a1,a2,a3) - (b1, b2,b3) = (a1by + azbz + asbs) (xx).

Except for a desire to have some sort of definition of vector product, after seeing vector sum and
scalar multiplication, this definition is definitely unmotivated; why this particular arrangement of
the components of @ and b?

Of course the ultimate goal is the equality of (*) and (**); this is the equating of geometry
(intuition) and algebra (precision) that has been arguably the dominant and most successful theme
of the many amazing successes of western mathematics. But one likes to spend as little time as
possible on completely unmotivated definitions and exposition.

The pedagogy suggested here begins by introducing, via drawings and hand gestures, orthog-
onality, and its motivations as mentioned above. With the Pythagorean theorem in mind, applied
to a triangle with sides @,b and (@ + b), it takes only a moment to expand @+ b||2 and see the
appearance of @ - b, as in (**), as the extra stuff that appears in addition to l|@||? and ||5]|2. Taking
as our fundamental axiom the Pythagorean theorem, the characterization of orthogonality as the
dot product being zero is an immediate consequence. The orthogonal projection P(g, a) is defined
geometrically as the multiple of a@, call it td, such that

(b — td) is orthogonal to a.

(See Definition 2.1.)

The algebraic characterization of orthogonality and a small bit of algebra then quickly implies
that
_<bd>

>
> al?

b

<
t =
<

QU o

a
a

b
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The Cauchy-Schwarz inequality follows now from the Pythagorean theorem, applied to the
orthogonal sum
E:(E—P@50+J%am, i
so that
<b,d>

| <b,d@> |
lla@l|?

lal

with equality occurring if and only if b — P(E, a) = 0,0rb= P(l_;, d)a, a multiple of a.

It should be mentioned that traditional algebraic proofs of the Cauchy-Schwarz inequality, like
the traditional introduction of dot product, suffer from an unmotivated strategy.

The characterization of angle in (*) in terms of the inner product follows from the drawing in
Definition 2.1, along with either the unit circle or right triangle definition of cosine.

812 = 1| (- PG.a@)) I + 1PG,a)I* > | PG,a)|* = | a* =

For more details, see “Ordinary Differential Equations, Linear Algebra, and Partial Differential
Equations,” Chapter III, subsection “ORTHOGONALITY,” pages 21-23 and APPENDIX TWO,
pages 117-121, under www.teacherscholarinstitute.com/FreeMathBooksCollege.html.

Some other pedagogy related to dot product chronologically: The equation for a line in R™
is naturally placed before the dot product, and immediately after defining collinear or parallel
vectors. This provides more motivation for considering orthogonality, as the idea complementary to
parallelness. The equation for a plane in R? is naturally placed after equating orthogonality with a
zero dot product and before considering orthogonal projections and angles; it’s a nice illustration of
the power of algebraic characterizations of orthogonality.




