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DEFINING ORTHOGONALITY LEADS TO DEFINING ANGLES

Ralph deLaubenfels

ABSTRACT. A reasonable definition of orthogonality in a normed vector space leads, via orthog-
onal projections, to two natural definitions of angles between pairs of vectors, one definition with
cosine, one with cotangent. Having these definitions coincide is equivalent to the vector space having
both the orthogonality and the norm defined by the same inner product < · > . We then have the
familiar definition of angle and orthogonal projection: the angle between ~a and ~b defined by

cos−1

(
< ~a,~b >

‖~a‖‖~b‖

)
(∗)

and the orthogonal projection of ~b onto ~a given by

P (~b,~a) =

(
<~b,~a >

‖~a‖2

)
~a.

It is shown that this construction of angle from orthogonality provides a very simple proof of the
agreement of (*) with any reasonable definition of angle in the plane. This emphasis on orthogo-
nality provides natural motivation for the inner product immediately upon its introduction. One
consequence of this approach is a short, natural and geometric (Pythagorean theorem) proof of the
Cauchy-Schwarz inequality.

I. INTRODUCTION. Orthogonality rivals calculus both in applicability and conceptual signf-
icance in mathematics, statistics, and physics. In normed vector spaces, orthogonality is usually
realized via an inner product, which then can be used to define the angle between any pair of vectors
with (*) of the Abstract; as a special case, two vectors are orthogonal when their inner product is
zero.

But in introducing the inner product, or, more generally, any notion of angle between vectors,
it is easier and more natural and motivated, to begin with orthogonality, even though it is merely
one particular angle (π2 ). We begin by listing desirable properties, O1–6, of orthogonality. These
properties are sufficient to define orthogonal projection, which in turn is sufficient, via right triangles
or unit circle, to define angle between a pair of vectors. In fact, angle may be defined with cosine or
cotangent. The less familiar cotangent definition has better properties, in general. We spend much
time exploring potential bad behaviour, via examples, of these definitions of angle, and present
admittedly incomplete and tentative good behaviour. Section II culminates (Theorem 2.17) with a
characterization of orthogonality relations that arise in the usual way from an inner product that
also determines the norm: it is equivalent to the cosine and cotangent definitions just mentioned
agreeing, and is also equivalent to the Pythagorean theorem being valid.

Section III is purely pedagogical, suggesting that the inner, or “dot,” product be introduced by
starting with orthogonality and the Pythagorean theorem.






























